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Abstract. We investigate the limit behaviour of random walks on some non-commutative
discrete groups related to knot theory. Namely, we study the connection between the limit
behaviour of the Lyapunov exponent of products of non-commutative random matrices—
generators of the braid group—and the asymptotics of powers of the algebraic invariants of
randomly generated knots. We turn the simplest problems of knot statistics into the context of
random walks on hyperbolic groups. We also consider the limit distribution of Brownian bridges
on so-called locally non-commutative groups.

1. Introduction

The great progress during the last decade in the construction of topological invariants of
knots and links (Jones, HOMFLY, Vassiliev) and their deep relation to the statistical physics
of integrable systems made the subject of invention of new series of knot and link invariants
very popular (see, for example, [Ka, AkW]).

There is, however, a completely different aspect of the problem, which is hardly ever
touched on in the mathematical literature, but which recently started to attract the attention of
physicists [Wi, Nel]. We call this aspect ‘the problem of the knot entropy’. In other words,
we are aiming to calculate the probability distribution associated with different homotopy
classes of randomly generated knots. One possible approach to this huge task suggests
dealing with slightly different but more well defined problems. Namely, one can represent
knots by braids and consider the distribution of corresponding topological invariants of
knots generated by ‘random braids’, i.e. for braids created by the uniform random choice
of braid-group generators.

Our main aim in the present work is as follows: we show that many non-trivial properties
of the statistics of knots generated by random braids can be explained in the context of
random walks over the elements of some local non-commutative group. The concept of the
local group has been introduced in [Ve].

Another reason which forces us to consider the limit distributions (and conditional limit
distributions) of Markov chains on locally non-commutative discrete groups is the fact that
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this class of problems could be regarded as the first step of a consistent harmonic analysis
on the multiconnected manifolds (like Teichitier space).

The paper is organized as follows. Section 2 is devoted to the calculations of conditional
limit distributions of the Brownian bridges on the braid graBpas well as to the derivation
of the limit distribution of powers of Alexander polynomial of knots generated by random
Bs-braids. The limit distribution of random walks on local free groups is discussed
in section 3 where some conjectures about statistics of random walks on the Byoup
are expressed. Each section is finished by a short summary of results and generalizing
conjectures.

2. Brownian bridges on simplest non-commutative groups and knot statistics

Investigation of the limit distributions of random walks on some non-commutative groups
is represented rather widely in probability theory. Namely, the set of rigorous results
concerning the limit behaviour of Markov chains on the free group and on the Riemannian
surface of constant negative curvature, which can be found in [Kes, Ve, VeKa, NeS]; the
problem of the construction of the probability measure for random walks on the modular
group has been studied in [CLM]. To this theme we could also attribute a number of spectral
problems considered in the theory of dynamic systems on hyperbolic manifolds [Sin, Gut]
as well as the subject of random matrix theory [Fu, Tu].

However, in the context of the ‘topologically probabilistic’ consideration, the problems
in dealing with the limit distributions of non-commutative random walks are practically
discussed except for a very few specific cases [KNS, KhN, NeSK]. In particular, in these
works it has been shown that the statistics of a random walk, with a fixed topological state
with respect to the regular array of obstacles on the plane, can be obtained from the limit
distributions of the so-called ‘Brownian bridges’ (see the definition below) on the universal
covering—the graph with the topology of the Cayley tree. The analytic construction of the
non-abelian topological invariants for the trajectories on the double-punctured plane and
statistics of simplest non-trivial random braki was briefly discussed in [NeV].

2.1. Basic definitions and statistical model

We recall some necessary information concerning the definition of braid groups and the
construction of the algebraic knot invariants from the braid-group representation.

2.1.1. Braids. The braid groupB, of n strings has: — 1 generatordos, o2, ..., 0,_1}
with the following relations:

0i0i4+10; = 0i4+10;0i+1 A<i<n-=1)

0;0; = 0;0; (i —jl =2 (2.1)

a,-cr;l = ofla,- =e.

Let us mention that:

e The word written in terms of ‘letters’, generators from the sgty,...,
On_1, ol‘l, el f’n__ll} gives a particulabraid. The geometrical interpretation of braid
generators is shown in figure 1.

e Thelengthof the braid is the total number of used letters, whilertiiaimal irreducible
lengthreferred to below as the ‘primitive word’ is the shortest non-contractible length
of a particular braid which remains after applying all possible group relations (2.1).
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Figure 2. Schematic representation of a particular braidvofienerators.

Diagramatically the braid can be represented as a set of crossed strings going from
top to bottom (see figure 2) produced after subsequent gluing of the braid generators
(figure 1).

e The closed braid appears after gluing the ‘upper’ and the ‘lower’ free ends of the braid
on the cylinder.

e Any braid corresponds to some knot or link. So, there is a principal possibility to use
the braid group representation for the construction of topological invariants of knots and
links, but the correspondence of braids and knots is not mutually single valued and each
knot or link can be represented by infinite series of different braids. This fact should
be taken into account in the course of knot-invariant construction.

2.1.2. Algebraic invariants of knots.Take a knot diagrank in a general position on the
plane. Letf[K] be the topological invariant of the kndf. One possible method of knot-
invariant construction using the braid-group representation can be achieved in the following
steps.

(i) Represent the knot by some brdids B,. Take the functionf

f:B,—~>C.

Demand thatf takes the same value for all brailgepresenting the given knd. That
condition is established in the well known theorem (see, for instance, [Jo1]):

Theorem 1 (Markov-Birman)he function fx{b} defined on the braib € B, is the
topological invariant of a knot or link if and only if it satisfies the following ‘Markov



. -~ - - Figure 3. Geometric representation of equations (2.2).

condition”:
fK {b/ b//} — fK {b// b/}
fx{b' on} = fxlonb'} = fi{b'} b',b" € B,
whereb’ andb” are two subsequent subwords in the braid—see figure 3.

2.2)

(i) Now the invariant fx {b} can be constructed using the linear functiopg} defined
on the braid group and called tiarkov trace It has the following properties:
(p{b/ b//} — g0{1?// b/}
p{b' o} = To{b'} (2.3)
p{b' o, 1) = Te{b')
where
T = plo) T =gl iell,n—1]. (2.4)
The invariantfk {b} of the knotK is connected to the linear functiona|{s} defined on
the braidb as follows:

_ \ 1/20(+)~#())
frlby = (z7)" "~ v/2 (r) @{b} (2.5)

where #+) and #—) are numbers of ‘positive’ and ‘negative’ crossings in given braid
correspondingly (see figure 1).

The Alexander algebraic polynomials are the first well known invariants of such type.
In the early 1980s Jones discovered the new invariants of knots. He used the braid
representation ‘passed through’ the Hecke algebra relations, where the Hecke algebra,
H, (1), for B, satisfies both braid-group relations (2.1) and an additional ‘reduction’ relation
([Jo1, VeK])

al-z =A—-1t)o; +t. (2.6)

Now the tracep{b} = ¢(t){b} can be regarded as taking the value in the ring of
polynomials of one complex variabie Consider the functional(¢) over the braid?’ o; b"}.
Equation (2.6) allows one to get the recursion (skein) relationg forand for the invariant
fx (@) (see [AkW] for details):

eO{b'oib"} = (1 —)em{b'b"} + t<p(t){b’0,-_1b”} (2.7)
and

- 1/2
fiw —1 (i) fe=a-1 (i) £90) (2.8)
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where i = f{b' o:b"}; fx = fIV ai_lb”}; 2 = f{b'b"} and the fractiort /r depends
on the representation used.
(iii) The tensor representations of the braid generators can be written as follows:

o;(u) = uli_>moo Z R]k:l(l/t) . 1(1) Q- [(i—l) ® Ell’lk ® E:qulrl ® 1(i+1) ® - I(n) (29)
klmn

where I® is the identity matrix acting at the positioll E,; is a matrix such that
(Eni) pg = Snpdig @nd RF™ is the matrix satisfying the Yang—Baxter equation

In
D R@RE (1 + )R () = > Ry )R (u + v) R, (v) . (2.10)
abc abc
In that scheme both known polynomial invariants (Jones and Alexander) can be
considered. In particular, it has been discovered [KaS, AkD] that the solutions of (2.10)
associated with the groupd/, (2) andGL(1, 1) are linked to Jones and Alexander invariants
correspondingly. To be more specific, one can find:

T . . . . .
(a) — = ¢2 for Jones invariantsfx (t) = V(¢). The corresponding skein relations are
T

VTG =tV @) = Y2 =Y vOr) (2.12)
and

(b) T 11 for Alexander invariantsfx (1) = V(r). The corresponding skein relatidns
T
are

Vi) = V=) = Y% = Y2V . (2.12)

To complete this brief review of the polynomial knot-invariant construction from the
representation of the braid groups let us mention that Alexander invariants also allow another
useful description [Bir]. Write the generators of the braid group in the so-called Magnus
representation

1 O
o 1 0 0
0, =06, = W <« jth row A=+t -t 1 (2.13)
— 0O 0 1
. 0
0 1

Now the Alexander polynomial of the knot represented by the closed bvaid ]—[ng:l Oy,
of length N can be written as follows:

N
A+14+224 -+ Hv){A) = det[]‘[% — ej| (2.14)
j=1
where the indexj runs ‘along the braid’, i.e. labels the number of generators used, while
indexa = {1,...,n—1,n,...,2n—2} marks the set of braid generators (‘letters’) ordered as
follows {04, ..., 0,_1, al‘l, e anjll}. In our further investigations we repeatedly address

that representation.

Let us stress that in general the minimal irreducible length of the braid, introduced
above, is not related directly to any topological knot invariants but we show below that
nevertheless the ‘primitive word’ can be served as a well defined characteristic of the ‘knot

1 Let us stress that one can obtain the standard skein relations for Alexander polynomials from (2.12) replacing
1/2 pyy _,1/2
t+/< by —t+/<.
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complexity’. The ‘primitive word’ has the simple topological sense which can be expressed
in the following necessary condition. If the ‘primitive word’ of some closed braid: of
strings has unit length then this braid belongs to the ‘trivial’ class and the corresponding
knot is represented uniquely by a setnoflisjoint unentangled trivial loops.

We are interested in the limit behaviour of knot or link invariants when the length of
the corresponding braid tends to infinity, i.e. when the braid ‘grows’. In that case we can
rigorously define some more simple topological characteristics than the algebraic invariant
which we call the ‘knot complexity’.

Definition 1. Call the knot complexity n, the power of some algebraic invarianf (¢)
(Alexander, Jones, HOMFLY) (see also [GN2])

n= lim In fK(t).

lt]—o0 INt

(2.15)

Remark. By definition, the ‘knot complexity’ takes one and the same value for rather a
broad class of topologically different knots corresponding to algebraic invariants of one and
the same power, being from that point of view weaker topological characteristics than the
complete algebraic polynomial.

Let us summarize the advantages of the quantity introduced in (2.15) with respect to
the corresponding topological invariayig (¢):

(i) One and the same value gf characterizes a narrow class of ‘topologically similar’
knots which is, however, much broader than the class represented by the polynomial
invariant X (r). This allows one to introduce the smoothed measures and distribution
functions foryp.

(ii) The knot complexityn describes correctly (at least from the physical point of view) the
limit cases:n = 0 corresponds to ‘weakly entangled’ trajectories whilee N matches
the system of ‘strongly entangled’ paths. The latter case has been discussed in detail
in [GN2].

(iii) The knot complexity keeps all non-abelian properties of the polynomial invariants.

Our main goal in the present section concerns the estimation of the limit probability
distribution of» for the knots obtained by randomly generated cloBe¢braids of length
N. Let us stress that we essentially simplify the general problem ‘of the knot entropy’.
Namely, we insert an additional requirement that the knot should be represented by a braid
from the groupB3 without fail.

2.1.3. Statistical model. We begin our investigation of the probability properties of
algebraic knot invariants with the consideration of statistics of the random loops (‘Brownian
bridges’) on the simplest non-commutative groups. In the most general way the problem
can be formulated as follows.

Take a discrete grou@, with a fixed finite humber of generatofgs, ..., g,_1}. Let
v be the uniform distribution on the sg4s, ..., g.-1, gIl, ce, g;}l}. For convenience we
supposer; = g; for j =i andh; = glfl for j=i4+n—1vh)) = ﬁ for any j. We
construct the (right-hand) random walk (the random wordfpmvith a transition measure,
v, i.e. the Markov chairf&,}, & = e € G, and Prol§; = ul§;_1 = v) = v(v~tu) = ;1.
It means that with the probabilityﬁ we add the elemenik,, to the given word
hy-1 = hghg, ... hq,_, from the right-hand side

1 Analogously we can construct the left-hand side Markov chain.
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Definition 2. The random wordV formed byN letters taken independently with the uniform
probability distributionv = ;1. from the set{gs, ..., g.-1, 81" ... &, 1} is calledthe
Brownian bridge(es) of length N on the groupg, if the primitive word of W is identical
to unity.

In this paper most attention is paid to the following two questions:

(i) What is the probabilityP (N) of the Brownian bridge on the group,?

(i) What is the conditional probability distributioR (k, m|N) of the fact that the subword
W’ consisting of the firsin letters of theN-letter word W has the primitive path
under the condition that the whole woill is the Brownian bridge on the grougp,.
(Below we call P(k, m|N) the conditional distribution foBs?)

It has been shown [KNS] that for the free group the corresponding problem can be
mapped to the investigation of random walks on a simply connected tree. Below we
represent briefly some results concerning the limit behaviour of the conditional probability
distribution of BB on the Cayley tree. In the case of braids the more complicated group
structure does not allow us to use the same simple geometrical image directly. Nevertheless
the problem of the limit distribution of random walks aB, can be reduced to the
consideration of the random walk on some grap{l’). In the case of the groumBs
we are able to construct this graph evidently, while for the gréyp(n > 4) we give
an upper estimate for the limit distribution of random walks considering the statistics of
Markov chains on so-called local groups.

2.2. Statistics of random walks and joint distributions of Brownian bridges on free group

The free group],, with two generatorg; andg, has the well known matrix representation
(see, for instance, [Mum])

81=<; g) g2=<é i) (2.16)

Consider the Markov chain with the states in the {ggt g2, g1, g, °} as described in
the previous section. Due to the simple topological structure of the free group, the limit
distribution of the random walk o, follows from the limit distribution of the random
paths on the Cayley tree with four branches [Kes, KhN, KNS] and with the local transitional
probabilities equal to} (see figure 4). In particular, the probabilit$,(k, N), of the fact
that in the randomly generated-letter wordW the primitive word length i%, satisfies the
set of equations [NeSK]

Pk,N+1) =1Pk+1N)+3Pk—-1N) *k>2)

Pk,N+1) = 3P(k+1N)+ Pk, N) k=1) 2.17)

Pk, N+1) =1Pk+1N) (k =0)

P(k,0) = 80.
The solution of (2.17) in the limilV — oo is

Pk, N) = (3)V236920(k 4 1, N) (2.18)
where

3\/3 % k = 1)
Ok, N) ~ (2.19)

2 k k?
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The functionQ (k, N) defines the probability distribution for the simplest random walk
on the half-lineZ* with the boundary conditio@y (k = 0, N) = 0.

Figure 4. Cayley tree corresponding to the free grdup

Lemma 1.The limit conditional probability distribution,P (k, m|N), for the Brownian
bridge on the group’, obeys the central limit theorem [KNS]

2 k? k2 (1 1
P(k,m|N):\/;(m(N_m))s/2 exp{—2 <m+N—m>} (2.20)

whenN — oo; m/N = constant and X k < N.

Proof. According to the definition of the conditional probability distribution gg, we
split the whole wordW into two subwordsW’ and W” havingm and (N — m) letters,
respectively. Now using definition 2 and the fact that the witds realized as a Markov
chain, we can represent the conditional distribution functiy, m|N) in the following
form:

Pk,m)P(k, N—m)
PO, N)N (k)

whereN (k) = 4 x 371 is the number of different primitive words of length

To make (2.21) clearer, recall that thdé-letter word W on the groupl™; is in one-
to-one correspondence with té-step trajectory on the Cayley tree and the length of the
primitive word W is identical to the distance between ends of the given trajectory along the
Cayley tree (i.e. is equal to the geodesics). The functiBtis m) and P(k, N — m) give
the probability that then- and (N — m)-step paths have finished arbitrary points of the
Cayley tree on the distandefrom the origin. The probability of coincidence of the ends
of these two different paths in soneemmonpoint on the distancé from the origin is just
/N (k).

Substituting (2.18) and (2.19) into (2.21) we obtain the postulated expression (2.20),
where the pre-exponent is due to the Dirichlet boundary conditign=a0. O

P(k,m|N) = (2.21)

Lemma 2.The joint conditional probability distributio® (k1, m1; ...; ks, ms|N) of the BB

on the groupl’; is converged forN — oo (wherer:lmj = N, m;j/N = constant and
1« ki < Nforany 1< j < s) to the finite-dimensional distribution of tres on the
halfline Z*.

Proof. Define the two-point conditional distribution functions; (kq, m; k2+, my|N) and
7~ (k1, my; k5 , mo|N), having the sense of the probabilities of two following events satisfied
simultaneously:

(i) in the N-letter wordW the firstm,-letter subwordW’ has the primitive lengtli;;
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k1
k1
m1
4 m+1
0 . . . .
N Figure 5. Schematic representation of the Brownian

bridges on the Cayley tree. case¥#&nd ¢) correspond
(b) to calculationz* andz~.

(ii) in the sameN-letter word the subwordV” obtained by adding the next letter to the
subwordW’ (m, = mq + 1) has the primitive length) =k, +1 (forx*) ork, =k —1
(for 77) under the condition that the whole woldl is completely contractible (i.e. its
primitive length is equal to zero).

Obviously, w*(ky, m1; ko, mo|N) gives the local transitional probabilities for the
conditional random walk when we make one step ‘forth’ or ‘back’ along the geodesics
on the Cayley tree (figure 5). Now to prove that the conditional radehdom process on
the groupI'; is mapped onto the simplest random walk without any drifZonand has the
Wiener measure, it is enough to show thdt = 7~ = % whenN — oo; i.e. the condition
of the contractibility of the wholeV-step trajectory completely ‘kills’ the drift from the
origin on the Cayley tree for the local jumps.

(@) Supposé; = k1 + 1. In accordance with the condition (ii) we have

P(ky, m) P (k) —k1, P (ky, N—m1—1)

Tky, my kI =k 1, = 1|N) =
" (k1, my; ky 1+1my=my+1N) PO. NN (k) z—1)

(2.22)

where(z — 1) is the number of tree branches connecting one arbitrary point on the tree to
the points on the next coordinational sphetrdq the coordinational number of the Cayley
tree),z = 4; P*(k; — k1, 1) is the probability to increase the distance along the tree per
one unit making one random step for > 1; P+ = -1 = 2.

Substituting (2.18) into (2.22) we obtain the foIIowmg expressionsfor

o 3V3Q(ki+1,m)Qks 42, N —m1 — 1)
8 Q(L, N) '

(b) Now letk, = k1 — 1. Reversing the direction along the trajectory, we get

(2.23)

w(ky, mys ky = ki —1,mp=my1+ 1N)
ntky, N —m1— 1 k; + 1, m1|0)
P(kz_, N — mq — 1)P+(k1 —kz_, 1)P(k2_ + 1, ml)

= 2.24
PO, N)N (kp)(z — 1) (.24

where P*(ky — k5, 1) = 3 (compare to (2.22)).

Equation (2.24) reflects the fact that the probability does not change if the random word
is written in the reversed order of steps, i.e. the first step has the nu¥liee second has
the number N — 1) and so on. Thusy~ has a similar form to (2.22) and can be written as

_ 3V/3Q(a+1m)Qlks, N—m1—1)
-8 Q1 N) ‘
Using the probability conservation law

(2.25)

at 4+ =1

t The distances are measured in terms of lengths of geodesics on the Cayley tree.
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and the recursion relation for the simplest random walk on the halfAin¢extracted from
(2.17), (2.18))

Qk1+2,N —m1—1) + Q(ks, N —m1 — 1) = 2Q(ks + 1L, N — my) (k=1)

it is possible to rewriter* as follows:

v o7t 10(kai+2,N-m1—1)
T at4mr- 2 Qtki+1,N—my) (2.26)
_ T 10k, N—mp—1)
T at+n 20Uk +LN-—my
Substituting (2.19) into (2.26) we find
n+_l_c(1—s) _=}+c(l—s) 2.27)

27 JN T T2 UN
wherec = k1/v/N (1 < k1 <« N), s =m1/N (1 <m < N) andN — oo.

Thus, the transition probabilities for the local jumps along the geodesics on the Cayley
tree under the condition B coincide with the transition probabilities for the simplest
random walk on the halflin&* when N — oco. Hence, we have one-to-one mapping of
the ‘radial’ random walk onto the tree under the conditiorsafon the standard diffusion
processwithout any drifton the halfline. Applying the standard central limit theorem to the
last process we get the desired statement of the theorem. O

2.3. Limit distribution of power of Alexander invariants of knots generated by rangpm
braids

We start the consideration with the calculation of the distribution function for the conditional
BB on the simplest non-trivial braid grouBs. The groupBs; can be represented byx22
matrices. To be specific, the braid generator&ndo, in the Magnus representation [Bir]
look as follows:

w=(5 1) e=(r %) (2.28)

wheret is ‘the spectral parameter’. It is well known that fo= —1 the matrices; ando,
generate the group SL(2, Z) in such a way that the whole grou is its central extension
with the centre

0
(010201)™ = (020102)" = (0102)% = (0201)% = < 0 5 ) . (2.29)

First we restrict ourselves to the examination of the gr&§y.(2, Z), for which we
defines; = oy anda, = o7 (att = —1).
The canonical representation 8fSL(2, Z) is given by the matriceS§, T':

sz(_ol é) T:(é 1) (2.30)

The braiding relatior,16,01 = 626167 in the {S, T} representation takes the form
s$2rs—2r~t=1. (2.31)
In addition we have

St=(ST)®=1. (2.32)
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This representation is well known and reflects the fact that in ternjS,df }-generators
the groupSL(2,7) is a free productz? @ Z3 of two cyclic groups of second and third
orders, respectively.

The connection ofS, T} and {64, 65} is as follows:

o1=T (T =01)

2.33
Oy = r-isT1t (S = 610201) . ( )

2.3.1. Random walks on the gro®i®L(2,Z). The modular grougPSL(2, Z) is a discrete
subgroup of the grou SL(2, R). The fundamental domain @fSL(2, Z) has the form of

a circular triangleA BC with the angIes{O, 3 %} situated in the upper halfplanen t > 0

of the complex plane = u +iv (see figure 6 for details). By definition of the fundamental
domain, at least one element of each orbitRfL (2, Z) lies inside theA BC domain and
two elements lie on the same orbit if and only if they belong to the boundary ol thé
domain. The groupPSL(2,7Z) is completely defined by its basic substitutions under the

action of generator§ andT:

St — -1/ (2.34)
T:¢—>¢+1.
Let us choose an arbitrary elemeq from the fundamental domain and construct
the orbit corresponding to it. In other words we raise a graptl’), which connects
the neighbouring images of the initial elemegtobtained under successive action of the
generators from the séfs, T, S~1, T=1} on the element,. The corresponding graph is
shown in figure 6 by the broken line and its topological structure is clear—reproduced in
figure 7. It can be seen that despite that the gr@gh) does not correspond to the free
group and has local cycles, its ‘backbon€(y), has a Cayley tree structure but with a
reduced number of branches compared to the graph of the free grauy.
Now we turn to the problem of the limit distribution of random walks on the graph
C(). The walk is determined as follows:

(i) Take an initial point (‘root’) of the random walk on the grapfi(I'). Consider
the discrete random jumps over the neighbouring vertices of the graph with the
transition probabilities induced by the uniform distributioron the set of generators

fundamental domain
of the modular group

Figure 6. The Riemann surface for the
modular group. The grapfi(I") representing
the topological structure ofPSL(2, Z) is
shown by the broken line.
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graph C(T)

backbone
graph C(y)

Figure 7. The graphC(I') and its backbone
graphC(y) (see the explanations in the text).

{61, 62,67, 5,1}, These probabilities are (see equation (2.33))
Prol&, = T¢olé,-1=¢0) = 3
Prob&, = (T ST ")¢ol5n-1 = {o) = 3
Prol&, = T*¢olé-1 = ¢0) = 3
Prob, = (TS™'T)¢olé-1=¢0) = 3 -
The following facts should be taken into account:

(a) the elements¢ and S~1¢g coincide (as it follows from (2.34));
(b) the process is Markovian in terms of the alphafaet . . ., 6{1} only,
(c) the total transition probability is conserved.

(i) Define the shortest distancé, along the graph between the root and terminal points
of the random walk. By construction, this distance coincides with the lefigthr|
of the minimal irreducible word¥s 7, written in the alphabets, T, S~1, 771}, The
connection of the distance, with the length|W;s, 5,;| of the minimal irreducible word
Wis,,5,) Written in the alphabefsy, 62, 61‘1, 52‘1} is established in the following lemma.

Lemma 3.(i) |Wis,.5,31 = 0 if and only if k = O; (i) for k > 1 the lengthlWs, 5,;| has the

following behaviour:
1
_ 1+o<>.
k— 00 k

W56,

The proof is rather trivial and is based on the evident construction of the gréph
where each bond by means of (2.33) can be associated with the gene?ﬁfommd
(616261)*L.

The ‘coordinates’ of the graph vertices are defined in the following way (see figure 7):

(2.35)

(a) We apply the arrows for the bonds of the graptl”) corresponding td’-generators.
The step towards (away from) the arrow means the applicatidh (f —1).

(b) We characterize each elementary cell of the gréph) by its distanceyu, along the
graph backbone from the root cell.

(c) We introduce the variable = {1, 2} which enumerates the ingoing vertices in each cell
only. We say that the walker stays in the c#l located at the distance along the
backbone from the origin if and only if it visits one of two ingoing vertices\f Such
labelling gives the unique coding of the whole gra@(T’).
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Define the probabilityU,, (i, N) that the N-step random walk along the gragh’) is
started in the root point and is finished in tlevertex of the cell at the distance pf steps
along the backbone. We should stress thigti, N) is the probability to stay irany of
N, (n) =3 x 2+~1 cells situated at the distangealong the backbone.

Itis possible to write the closed system of recursion relations for the fundtipgs, N),
but here we attend to some more rough characteristics of the random walk. Namely we
calculate the ‘integral’ probability distribution of the fact that the trajectory of the random
walk starting in an arbitrary vertex of the root céll is finished in anarbitrary vertex
point of the cellM situated on the distange along the graph backbone. This probability,
U(u, N), reads

U Ny =3 ) Vs N).
a={1,2}
Lemma 4.The relation between the distancés, along the graphC(I') and u along its
backboneC(y) is as follows:

k

u

:1+o(i>. (2.36)

J—>00

This fact is the simple consequence of the constructions of the gr@phs and C(y)
(figure 7).

The following theorem gives the limit distribution for the random walks on the group
PSL(2,7).

Theorem 2.The probability distributiorlU (k, N) that the randomly generatéd-letter word
Wis,.5, With the uniform distributionv = 1 over the generator§;, 52, 5; %, 6, '} can be
contracted to the minimal irreducible word of lendthhas the following limit behaviour

1
e k=0
h 1+ 2v2\" | N3/2
Uk, N) >~ NCITE) ( 2 ) 1 2h (2.37)
WZ kexp<—4N> l1<k<N

2
whereh =2 + \2f

Proof. Suppose the walker stays in the vertenf the cellM located at the distange > 1
from the origin along the graph backbope The change inu after making one arbitrary
step from the sef61, 6, 5; *, &, '} is summarized in the following table.

Table 1.

a=1 a=2
o1= w—>u+l o61=T w—>p—1
Go=T71ST 1 pu—-pu Go=T71ST 1 pu—opu+1
Grt=r1"1 p—pu—-1 &t=r1"1 w—>pu+1

G =TS'T p—op+l &'=TST pu-pu

It can be seen that for any value @ftwo steps increase the length of the backbane,
one step decreases it and one step leaveschanged.

Let us introduce the effective probabilitiegi;—to jump to some specific cell among
three neighbouring ones of the gragkil’) and p,—to stay in the given cell. Because of the
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symmetry of the graph the conservation law has to be writterpag-3, = 1; by definition
1

we have: p; - 7. Thus we can write the following set of recursion relations for the
integral probabilityU (i, N):

U, N+ =3Uu+L N+ 30w, N+30@u-1LN)  (u=2)
Uu,N+1)=31Uu+1 N)+ iU N) (u=1) (2.38)
Up,N=0)=38,1.

The solution of (2.38) we search for in the form

U, N) = A*BNV (i, N) (2.39)
where the constantd and B we choose from the auxiliary conditions:
A 1 1 2 1 1
Resolving these equations we get
1 2 2
A=+2 B=4+“2f h=2+*2f. (2.41)

Equations (2.40) imply that for the functiovi(i, N) we obtain a normaib random
walk on the halflinex > 0 (i.e. V(1 < 0, N) = 0) with conserved transition probabilities
and with some special boundary and initial conditions:

2 1
(1—h) V(M,NH—EV(M—LN) (n =2

Ve, N +1) = %V(u—i—l, N)+2<1—§) V(w, N) (=1 (2.42)
V(N =0)=6,,.

It is possible to obtain the exact asymptotic solution of (2.42) Nor> oco. First we
represent (2.42) in a slightly different way, rewriting as follows:

1 2 1

with the boundaryV (u = 0, N) = 0 and initial V(u, N = 0) = §,, 1 conditions.
Then we introduce the generating function féfvariable and the sin-Fourier transform
for w-variable on the halfling. > 0

o0

Vi)=Y ¥y v, N)sin”#. (2.44)
N=0 n=0

Now we have from (2.43) and (2.44)

U 2 b4

1 1 . u 2
-V(u,s) — - sin =—-cos—V@u,s)+({1— | V(u,s)
s K I h

[ h
1 1!
+<1— sinﬂ—/ sin™ v (u, s) du . (2.45)
h 11 I
The solution of (2.45) reads
1 (' nu D1(h, s)
- —V(u,s)du = 2.46
lfosm ] (u, s) du Doi.s) ( )
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where
Dylh. ) = 1/” sirf w dw
S = o 1=s((2/h)cosw +1—2/h)
ho h
:—;+E(h+6s—hs—«/ﬁ\/(l—s)(h+4s—hs)> N
:g-#vl—s—i—O(l—s) (2.47)
and
2\ 1 [~ s Sif w dw
DZ(h’s)=1_<1_h>n/o 1—s((2/h)ycosw +1—2/h)
=1- (1— lf) sD1(h,s). (2.48)

It is easy to see thab,(h, s) is always positive for anys| < 1, which means that
equation (2.45) has a continuous spectrum and the limit distribution of the furictjony)
is governed by the central limit theorem for the random walks on the halfline. The exact
solution for the functionV (i, s) is

2 (7 sinw sinwu dw
Vip,s) = —— — . 2.49
(1) Dz(h,s)n/(; 1—5((2/h)cosw +1—2/h) (2.49)
In particular, we have
2h (1 — V/ha/1— 2V h 1
Vip=1s)= ( Vh S) = Vi + constant (2.50)
4—h+h-2vhJ1—=s h—2a+ /€
and
2h exp(—puv/hy/1—s 2Jh exp{—uvhv1—s
Vin > 1 s) ~ p(=n ) _ 2/h expf-u | (2.51)
4—h+4+h—-2vhJ1—=s h—=2 a+ e
_ 4—h _
wherea = Tr=2 ande =1—-s5 > 0.

Performing the inverse Laplace transform and taking into account the contribution from
the branching point a¢ = 0 only, we obtain in the limitv — oo

V(u=1N)~ 2vh (1 —aeazNerfc(aJN)> ~ Vh ! (2.52)

h—2\JmN ~ aymw(h—2) N32
and
2Jh ( 1 2 2 uv'h
Ve 1, N)~ NZ (= g /AN _ , guavita Nerfc(a«/N + ))
(e ) h—2\JVnN 2N
vh I w2h
~ “20). 2.53
a7 (h —2) N3 eXp< 4N ) (2.53)

Substituting the last equation in (2.39) and taking into account lemmas 3 and 4, we get the
statement of theorem 2. O

Corollary 1. The probability distributionU (k, m|N) of the fact that in the randomly
generatedN-letter trivial word in the alphabet{s, 62, 6—1‘1, &2‘1} the subword of firstn
letters has a minimal irreducible length reads

h k2 k’h (1 1
Uk,m|N) ~ JR@—h) (N — m))32 exp{4 (m + N m)} . (2.54)
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Proof. The conditional probability distributioty (i, m|N) of the fact that the random walk
on the backbone graplC(y), started from origin visits after firsh (m/N = constant)
steps some graph vertex situated at the distanesd afterN steps returns to the origin,
is determined as follows (compare to the proof of lemma 1)

_ U(u.m)U(u, N —m)

(2.55)

where theN, = 3 x 2¢71) and U(u, N) is given by (2.37). Using lemma 3 we get
equation (2.54). O

2.3.2. The random walks on the braid grola and the limit distribution of powers of
Alexander invariants. Now we are in a position to formulate some limit theoremsgsr
on the groupB; as well as to find the limit distribution for the knot complexigy(i.e. a
power of the Alexander polynomial of the knots represented by the random braid8jom

Theorem 3The probability Z (k, m|N) for the Brownian bridge on the grouBs has the
limit behaviour

constant

m32(N — m)32 k=0

Z(k,m|N) < 1 1
v (k, m)y (k, N—m) exp{—constantkz( +

m N-—m

)} l1«k<N
(2.56)

whereyr (k, m) is some function ok andm with low-power behaviour irk andm. (We
expecty (k, m) ~ k/m®? but the given proof is too rough to show that behaviour.)

Proof. The conditional probability distributiox (k, m|N) for N — oo is bounded from
below and above

Pk, m|N) < Z(k,m|N) < Uk, m|N) (2.57)

where P(k,m|N) and U (k, m|N) are the limit probabilities for the Brownian bridges on
the groupd™; (i.e. the free group) an®SL(2, Z) (i.e. the braid group at the point= —1)
correspondingly. Substituting asymptotics (2.20) and (2.54) into (2.57) we come to the
conclusion (2.56). O

The problem of calculating the conditional limit probability distribution of the Brownian
bridges on the grouBs can easily be turned to the problem of calculating the conditional
distribution function for the powers of Alexander polynomial invariants of knots produced
by randomly generated closed braids from the gré&gpwhich allows one to make a first
step in the investigation of correlations in knotted random walks.

The closure of an arbitrary brailtle B3 of total lengthN gives the knot (link)k. Now
split the braidb in two partst’ andb” with the respective lengths and N — m and make
the ‘phantom closure’ of the sub-braiisandb” as is shown in figure 8. The phantomly
closed sub-braidg’ and»” correspond to two phantomly closed parts (‘subknots’) of the
knot (link) K. Now we could ask for the conditional probability to find these subknots in the
state characterized by the complexityvhen the knot (link)K as a whole is characterized
by the complexityn = O (i.e. the topological state df ‘is close to trivial’).

It is convenient to introduce the normalized generators of the grbymajﬂn =
(detafl)‘lofl to get rid of an unimportant commutative factor dealing with the norm of
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the matricesr; ando,. Now we can rewrite the power of Alexander invariant (2.14) in the
form

n=[#+) —#)]+1n (2.58)

where #+) and #—) are the numbers of thea or 0’1 in the given braid and is the
power of the normalized matrix produ{:'t[ 1 ||0a [l The condition of Brownian bridge
impliesn =0 (i.e. #+) — #(—) = 0 andi = 0).

Theorem 4.Take the set of all knots obtained by closure RY braids of lengthN with
uniform distribution over the generators. The conditional probability distribution m|N)

for the normalized complexity; of Alexander polynomial invariant has the Gaussian
behaviour and is given by equation (2.54) where 7.

Proof. Write
lloall = T(2) lloall = T"HO) ST (1) (2.59)
whereT (t) and S(¢) are the generators of the-deformed’ groupP SL,(2, Z)

(=12 0 11
ro= ( 0 (-2 ) < 0 1 )
_ (—t)~Y2 0 1-1
o= O ) (Yot 1) 260

(—t)~Y2 0 0 1
S(t) = < 0 (_t)1/2 ) ( -1 0 ) .

The groupPSL;(2,Z) preserves the relations of the gro®j¥L (2, Z) without changes,
i.e. (T()S(t))® = S4(t) = T(t)S?(t1)T~1(t)S~?(t) = 1 (cf equation (2.31)). Hence, if we
construct the grapl€ (T";) for the groupPSL,(2, Z) connecting the neighbouring images
of an arbitrary element from the fundamental domain, we ultimately come to the fact
that the graph<"T’,) and C(T") (figure 7) are topologically equivalent. This is the direct
consequence of the fact that the groBp is the central extension aPSL(2,7). Let us
stress that the metric properties of the graph§,) and C(I") are different because of the
different embeddings of the grougsSL,(2, Z) and PSL(2, Z) into the complex plane.

Thus, the matrix producﬂj\’=1||aaf|| for the uniform distribution over the braid
generators is in one-to-one correspondence withNksetep random walk along the graph
C(") (as is explained in the proof of theorem 2) and its power coincides with the

Figure 8. Construction of a Brownian bridge for knots represented
by Bs-braids.
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corresponding geodesics length along the backbone grafflaking into account lemmas 2
and 3 we conclude that the limit distribution of random walks on the g®ym terms of
normalized generators (2.59) is given by (2.37) whiehould be regarded as a power of
the product]_[]].\':l llow, ||. The statement of the theorem now follows from corollary 1.

3. Random walks on locally free groups

We aim to get the asymptotics of the conditional limit distributiong®on the braid group

B,. For the case > 3 it is a rather hard problem which is as yet unsolved. However, we
can extract some estimate for the limit probability distributions®bn B, considering the
limit distributions of random walks on the so-called ‘local groups’ [Ve].

Definition 3. The groupLF,1(d) is calledlocally freeif the generators{ f1, ..., f,} obey
the following commutation relations:

(i) Each pair(f;, fi) generates the free subgroup of the gralip, if |j — k| < d;

(i) fifi = fufi for |j —k| >d
(Below we restrict ourselves to the cage= 2 only for which we defineLF, 1(2) =
Efn+]_).

Theorem 5The limit probability distribution for theN-step random walk on the group
LF,+1 to have the minimal irreducible length is

__constant _ ¢ 3u? _
constant v (4 \? _ wh '
~ 9 1
P, N) = == (h(pa)™?) (p) exp| =4 (n> 1)

whereh = 2+ r/(pq)Y/? and the values op, ¢, r are given by (3.21).

Proof. We propose two approaches valid in two different cases: (ixfer 3 and (ii) for
n> 1.

(i) The following geometrical image is useful. Establish the one-to-one correspondence
of the random walk in some-dimensional spac&H" (x1, ..., x,) with the random walk
on the groupLF, 1, written in terms of generatorsfy, . .., f,” 1}. To be more specific,
when one adds one generator, sgy,(or f;~ 1 to the given word inCF,, the walker makes
one unit step towards (backwards fﬁrl) the axis [Qx;[ in the spaceLH" (x1, ..., X,).

Now relations (i) and (ii) of deflnltlon 3 could be reformulated in terms of metric
properties of the spacéH". Actually, relation (i) means that the successive steps along
the axes [Ox;[ and [0, x[ (|j — k| > 2) commute, hence the sectign;, x;) of the space
LH" is flat and has the Euclidean metrie?d+ dx?. A completely different situations
appears when looking at the projections of the random trajectorig&Hh to the space
sections(x;, x;+1). Here the steps of the walk obey the free group relations (i) and the walk
itself is mapped to the walk on the Cayley tree. It is well known that the Cayley tree can
be uniformly embedded (without gaps and self-intersections) into the 3-pseudosphere which
gives the representation of the non-Euclidean plane with the constant negative curvature
(Lobachevskii plane). Thus, the sectiov, x;,1) has the Lobachevskii plane metric which
it is convenient to write in the fornﬁl/xz)(dx2 + dx? 1)

For the groupLF, these arguments lead to the fact that the appropriate spa¢
has the following metric:

2 2 2
ds? = w (3.2)

x2
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Actually, the section(xy, x3) is flat while the sectiongxj, x2) and (x2, x3) have the
Lobachevskii plane metric. The non-Euclidean (hyperbolic) distance between two points
M’ and M” in the spaceCH® is defined as follows:

1 3 2
coshuM'M"y =1+ ———— xi(M') — x;(M") 3.3
e (M'M") xZ(M,)xZ(M,,);( (M) = xi(M")) (3.3)
where{x1, x2, x3} are the Euclidean coordinates in ttzhalfspace; > 0 andu is regarded
as the geodesics on the 4-pseudosphere (Lobachevskii space) [KTS].
The diffusion equation for the scalar densi®(q, t) of the free random walk on the
Riemann manifold reads (see, for instance, [KTS])

d 1 0 d

—P(q, N)=D—— 1 ) PN 3.4

i P@ W =D (e (e, ) P @4
whereD = % for uniform distribution over generators and

P(g,N =0)=4(q)

/ JEP(q. Nydg =1 (3.5)

(gix is the metric tensor of the manifold; = detg;;). For the 4-pseudosphepg, reads

1 0 0
0 sintfu 0
0 0 sintf  sir? 6

lgixll =

‘ . (3.6)

Solving (3.4) one gets

—ND 2
P(u.N) = ° ad exp( ad > 3.7)

87 /7 (N D)3 sinhu AND

We find it very important to pay attention to the following fact. The distribution function
P(u, N) gives the probability to find the random walk starting at the pgirt 0 after N
steps in somespecificpoint located at the distanqge in the corresponding non-Euclidean
space. The probability to find the poisbmewhereat the distance: after N steps is

P, N) = P(u, N) N (w) (3.8)

where
N () = sintf (3.9

is the area of the sphere of radiuson the 4-pseudosphere.

The difference betwee® and P is insignificant in the Euclidean geometry, while in
the non-Euclidean space it becomes dramatic. Returning to the random walk on the group
LF4 we conclude that the distribution functidP(u, N) gives the probability for thev-
letter random word written in terms of uniformly distributed generator£&n to have the
primitive word of some lengthw (see equation (3.1)).

(ii) For the groupLF,+1 (n > 1) we extract the limit behaviour of the distribution
function exactly evaluating of volume of the maximal non-commutative subgrodof ;.

Let V, () be the number of all non-equivalent primitive words of lengtbn the group
LF,11. We show thatV, (1) has the following asymptotics fqr > 1:

n

8r2\"
V,(u) = constantx <7 — 2) n>1. (3.10)
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To get (3.10) we represent each primitive waij of length w in the groupLF, ;1 in
the so-callechormal order

Wy = (far) (far) "o (fu) (3.12)

where>_, Im;| = u(m; # 0Vi; 1 < s < u) and the sequence of generatgis in (3.11)
for all distinct f,, satisfies the following local rules:

(a) If thi = fl! thenfa:+1 € {f21 f37 .. fn}:
(b) If fo, = fi @ <k <n—1) thenfy, € {fic1, firr, ... fu;
(C) If fOl,' = fm then,fai+1 = fn—l-

These local rules give the prescription of how to enumerate all distinct primitive words.
If the sequence of generators in the primitive wa#) does not satisfy the rules (a)—(c),
we commute the generators in the wdig} until the normal order is restored. Hence, the
normal order representation enables one to give the unique coding of all non-equivalent
primitive words in the groupgCF 1.

The calculation of the number of distinct primitive words,(w), of the given length
w is now rather straightforward:

o N
Vi) =) Res) Y A [Z mi| — u] (3.12)
s=1 {m1,...,my} i=1

where R(s) is the number of all distinct sequences sofgenerators taken from the set
{f1,..., fn} and satisfying the local rules (a)—(c) while the second sum gives the number
of all possible representations of the primitive path of lengtlfor the fixed sequence of
generators(‘prime’ means that the sum runs over all % 0 for 1 < i < s; A is the
Kronecker function).

To get the partition functiomR(s) let us mention that the local rules (a)—(c) define the
generalized Markov chain with the states given by ithe n coincidence matrixi, where
the rows and columns correspond to the generafors. ., f,:

011 1..11
1011..11
0101..11
000 0. 1
0000..10
Thus,
R.(s) = Sp((7,)']. (3.14)

Supposing that the main contribution in (3.12) appears fsom 1 we take forR,(s) the
following asymptotic expression:

Ry(9)] (50 = (™)’ (3.15)

whereA"® is the highest eigenvalue of the matifyx (n > 1).
Simple but rather tedious calculations give the following value for the highest eigenvalue

Ay for n > 1:
472 1
=3-—5+4+0|=5). 3.16
n>1 n? + <n2> (3.16)
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Figure 9. The verticesA and B should be glued because they represent
one and the same word in the groggF,, ;1.

The remaining sum in equation (3.12) is independerR @f, so its calculation is trivial:

/ S e (,bL — 1)'
[m;m A [; Im; | M} 2 D= (3.17)
Substituting (3.16) and (3.17) into (3.12) and evaluating the sum ovwer arrive at (3.10).

The random walk on the groupF,1 can now be viewed as follows. Take tfree
groupl", with generatorg f1, . .., f,} where all f; (1 <i < n) do not commute. The group
', has a structure a ofi2branching Cayley tre&; (I",,), where the number of distinct words
of length i is equal toV, (u),

V() = 2n(2n — 1* 1. (3.18)

The graphC (LF 1) corresponding to the groupF, .1 can be constructed from the graph
C(T',) by the following recursion procedure:

(1) Take the root vertex of the gragh(T",,) and consider all vertices on the distance- 2.
Identify those vertices which correspond to the equivalent words in the g€dgp ;.
(One particular example is shown in figure 9.)

(2) Repeat this procedure taking all vertices at the distanee(l, 2, ...) and ‘gluing’ the
vertices at the distange + 2 according to definition 3.

Despite the very complex local structure of the gra&ptCF, 1), equations (3.10) and
(3.18) enable one to find the asymptotics of the random walk on the @grépif,;1). The
probability P(u, N) to find the walker at the distange from the origin afterN random
steps on the grapt (LF,1) satisfies the following recurrence relation:

P, N +1) = pP(u+1,N)+rP(u, N) + ¢P(u — 1, N) (3.19)

where p, r andg are the probabilities ‘to go backiu(— u — 1), ‘to stay’ (u — u) and
‘to go forth’ (u — u + 1) making one random stegv(— N + 1). For instance, for the
random walk onC(I",) one hasp = 1/2n,r =0,g = 1— p.

The local transition probabilitiep, r, ¢ can be computed for > 1 as follows. Take
some point at the distance (‘levell) from the origin on the grapld’ (LF,+1) (embedded
in C(T',)). The average number of branches going from the lew& the levelu + 1 and
leading todistinctvertices isV, (u + 1)/ V, (1) (see equation (3.10)). Hence we have in the
limit n > 1

9 _7 (3.20)
p
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while the part foridentical vertices on the levek + 1 is equal to” U2t 10D which
gives the value of. Thus we finally get
2n—8 7 49
r = — N = — .
m-1 PT8am-1 1T 8@2-1

Substituting (3.21) into (3.19) we can proceed in the same way as in the proof of theorem 5.
Namely, we introduce

P(u, N) = A*BNV(u, N)

(3.21)

(cf equation (2.22)) where we derive the constaitand B from the auxiliary conditions

pr 1 1—(p+q)_1_§ gB 1
AB  h A N h A k'
Under such a choice of constants the functitiu, N) describes the ordinary random walk
on the halfline with the diffusion coeﬁicierﬁt. Thus we obtain the desired distribution

function (3.1) of the primitive word lengths for random walks on the grdug,+1. O

Corollary 2. Equation (3.1) gives the estimation for the limit distribution of the primitive
words on the groum, for n > 1 from below.

3.1. Discussion

We shall stress that the ‘Brownian bridge’ condition for the random walk on the locally
free groups completely compensates the ‘drift from the origin’ turning the corresponding
limit probability distribution to the Gaussian omeith zero mearnif the distribution over

the generators is uniform. We believe this property to be general for random walks on
non-commutative groups. Anyway, the mentioned behaviour has recently been established
in many cases [KNS, NeS, Let].

We find very encouraging further investigation of the random walks on the groups
LF,.+1(d) for different values ofd. It should give an insight for consideration of the
statistics of random walks on ‘partially commutative groups’ and it could also be regarded
as a natural model for the problem of limit distributions on the group of coloured braids.

Finally, let us express the conjecture which generalizes our consideration.

Conjecture 1.The complexityn of any known algebraic invariants (Alexander, Jones,
HOMEFLY) for the knot represented by ti&,-braid of lengthV with the uniform distribution
over generators has the following limit behaviour:

constant n?
wherea(n), B(n), §(n) are numerical constants dependingroonly.
The knot complexityn in an ensemble oBrownian bridgeson the groupB, has a
Gaussian distribution, where

(M =0 (7°)=386mN (3.23)
andd(n) is some constant depending aronly.

The proof of this conjecture is currently in progress. The main idea consists in utilizing
the relation between the knot complexitythe length of the shortest non-contractible word
and the length of geodesics on some hyperbolic manifold.
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