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Abstract. We investigate the limit behaviour of random walks on some non-commutative
discrete groups related to knot theory. Namely, we study the connection between the limit
behaviour of the Lyapunov exponent of products of non-commutative random matrices—
generators of the braid group—and the asymptotics of powers of the algebraic invariants of
randomly generated knots. We turn the simplest problems of knot statistics into the context of
random walks on hyperbolic groups. We also consider the limit distribution of Brownian bridges
on so-called locally non-commutative groups.

1. Introduction

The great progress during the last decade in the construction of topological invariants of
knots and links (Jones, HOMFLY, Vassiliev) and their deep relation to the statistical physics
of integrable systems made the subject of invention of new series of knot and link invariants
very popular (see, for example, [Ka, AkW]).

There is, however, a completely different aspect of the problem, which is hardly ever
touched on in the mathematical literature, but which recently started to attract the attention of
physicists [Wi, Nel]. We call this aspect ‘the problem of the knot entropy’. In other words,
we are aiming to calculate the probability distribution associated with different homotopy
classes of randomly generated knots. One possible approach to this huge task suggests
dealing with slightly different but more well defined problems. Namely, one can represent
knots by braids and consider the distribution of corresponding topological invariants of
knots generated by ‘random braids’, i.e. for braids created by the uniform random choice
of braid-group generators.

Our main aim in the present work is as follows: we show that many non-trivial properties
of the statistics of knots generated by random braids can be explained in the context of
random walks over the elements of some local non-commutative group. The concept of the
local group has been introduced in [Ve].

Another reason which forces us to consider the limit distributions (and conditional limit
distributions) of Markov chains on locally non-commutative discrete groups is the fact that
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this class of problems could be regarded as the first step of a consistent harmonic analysis
on the multiconnected manifolds (like Teichmüller space).

The paper is organized as follows. Section 2 is devoted to the calculations of conditional
limit distributions of the Brownian bridges on the braid groupB3 as well as to the derivation
of the limit distribution of powers of Alexander polynomial of knots generated by random
B3-braids. The limit distribution of random walks on local free groups is discussed
in section 3 where some conjectures about statistics of random walks on the groupBn
are expressed. Each section is finished by a short summary of results and generalizing
conjectures.

2. Brownian bridges on simplest non-commutative groups and knot statistics

Investigation of the limit distributions of random walks on some non-commutative groups
is represented rather widely in probability theory. Namely, the set of rigorous results
concerning the limit behaviour of Markov chains on the free group and on the Riemannian
surface of constant negative curvature, which can be found in [Kes, Ve, VeKa, NeS]; the
problem of the construction of the probability measure for random walks on the modular
group has been studied in [CLM]. To this theme we could also attribute a number of spectral
problems considered in the theory of dynamic systems on hyperbolic manifolds [Sin, Gut]
as well as the subject of random matrix theory [Fu, Tu].

However, in the context of the ‘topologically probabilistic’ consideration, the problems
in dealing with the limit distributions of non-commutative random walks are practically
discussed except for a very few specific cases [KNS, KhN, NeSK]. In particular, in these
works it has been shown that the statistics of a random walk, with a fixed topological state
with respect to the regular array of obstacles on the plane, can be obtained from the limit
distributions of the so-called ‘Brownian bridges’ (see the definition below) on the universal
covering—the graph with the topology of the Cayley tree. The analytic construction of the
non-abelian topological invariants for the trajectories on the double-punctured plane and
statistics of simplest non-trivial random braidB3 was briefly discussed in [NeV].

2.1. Basic definitions and statistical model

We recall some necessary information concerning the definition of braid groups and the
construction of the algebraic knot invariants from the braid-group representation.

2.1.1. Braids. The braid groupBn of n strings hasn − 1 generators{σ1, σ2, . . . , σn−1}
with the following relations:

σiσi+1σi = σi+1σiσi+1 (1 6 i < n− 1)

σiσj = σjσi (|i − j | > 2) (2.1)

σiσ
−1
i = σ−1

i σi = e .
Let us mention that:

• The word written in terms of ‘letters’, generators from the set{σ1, . . . ,

σn−1, σ
−1
1 , . . . , σ−1

n−1} gives a particularbraid. The geometrical interpretation of braid
generators is shown in figure 1.

• The lengthof the braid is the total number of used letters, while theminimal irreducible
length referred to below as the ‘primitive word’ is the shortest non-contractible length
of a particular braid which remains after applying all possible group relations (2.1).
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Figure 1. Graphic representation of generatorsσi (‘positive’) and
σ−1
i (‘negative’) in the groupBn.

Figure 2. Schematic representation of a particular braid ofN generators.

Diagramatically the braid can be represented as a set of crossed strings going from
top to bottom (see figure 2) produced after subsequent gluing of the braid generators
(figure 1).

• The closed braid appears after gluing the ‘upper’ and the ‘lower’ free ends of the braid
on the cylinder.

• Any braid corresponds to some knot or link. So, there is a principal possibility to use
the braid group representation for the construction of topological invariants of knots and
links, but the correspondence of braids and knots is not mutually single valued and each
knot or link can be represented by infinite series of different braids. This fact should
be taken into account in the course of knot-invariant construction.

2.1.2. Algebraic invariants of knots.Take a knot diagramK in a general position on the
plane. Letf [K] be the topological invariant of the knotK. One possible method of knot-
invariant construction using the braid-group representation can be achieved in the following
steps.

(i) Represent the knot by some braidb ∈ Bn. Take the functionf

f : Bn→ C .

Demand thatf takes the same value for all braidsb representing the given knotK. That
condition is established in the well known theorem (see, for instance, [Jo1]):

Theorem 1 (Markov–Birman).The function fK{b} defined on the braidb ∈ Bn is the
topological invariant of a knot or link if and only if it satisfies the following ‘Markov
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Figure 3. Geometric representation of equations (2.2).

condition’:

fK{b′ b′′} = fK{b′′ b′}
fK{b′ σn} = fK{σn b′} = fK{b′} b′, b′′ ∈ Bn (2.2)

whereb′ andb′′ are two subsequent subwords in the braid—see figure 3.

(ii) Now the invariantfK{b} can be constructed using the linear functionalϕ{b} defined
on the braid group and called theMarkov trace. It has the following properties:

ϕ{b′ b′′} = ϕ{b′′ b′}
ϕ{b′ σn} = τϕ{b′}
ϕ{b′ σ−1

n } = τ̄ ϕ{b′}
(2.3)

where

τ = ϕ{σi} τ̄ = ϕ{σ−1
i } i ∈ [1, n− 1] . (2.4)

The invariantfK{b} of the knotK is connected to the linear functionalϕ{b} defined on
the braidb as follows:

fK{b} = (τ τ̄ )−(n−1)/2

(
τ̄

τ

)1/2(#(+)−#(−))
ϕ{b} (2.5)

where #(+) and #(−) are numbers of ‘positive’ and ‘negative’ crossings in given braid
correspondingly (see figure 1).

The Alexander algebraic polynomials are the first well known invariants of such type.
In the early 1980s Jones discovered the new invariants of knots. He used the braid
representation ‘passed through’ the Hecke algebra relations, where the Hecke algebra,
Hn(t), for Bn satisfies both braid-group relations (2.1) and an additional ‘reduction’ relation
([Jo1, VeK])

σ 2
i = (1− t)σi + t . (2.6)

Now the traceϕ{b} = ϕ(t){b} can be regarded as taking the value in the ring of
polynomials of one complex variablet . Consider the functionalϕ(t) over the braid{b′ σi b′′}.
Equation (2.6) allows one to get the recursion (skein) relations forϕ(t) and for the invariant
fK(t) (see [AkW] for details):

ϕ(t){b′σib′′} = (1− t)ϕ(t){b′b′′} + tϕ(t){b′σ−1
i b′′} (2.7)

and

f +K (t)− t
(
τ̄

τ

)
f −K (t) = (1− t)

(
τ̄

τ

)1/2

f 0
K(t) (2.8)
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wheref +K ≡ f {b′ σi b′′}; f −K ≡ f {b′ σ−1
i b′′}; f 0

K ≡ f {b′ b′′} and the fraction̄τ/τ depends
on the representation used.

(iii) The tensor representations of the braid generators can be written as follows:

σi(u) = lim
u→∞

∑
klmn

Rkmln (u) · I (1) ⊗ · · · I (i−1) · · · ⊗ Eink ⊗ Ei+1
ml ⊗ I (i+1) ⊗ · · · I (n) (2.9)

where I (i) is the identity matrix acting at the positioni; Enk is a matrix such that
(Enk)pq = δnpδkq andRkmln is the matrix satisfying the Yang–Baxter equation∑

abc

Rbqcr (v)R
ap

kc (u+ v)Riajb(u) =
∑
abc

R
ap

bq (u)R
ia
cr (u+ v)Rjbka (v) . (2.10)

In that scheme both known polynomial invariants (Jones and Alexander) can be
considered. In particular, it has been discovered [KaS, AkD] that the solutions of (2.10)
associated with the groupsSUq(2) andGL(1, 1) are linked to Jones and Alexander invariants
correspondingly. To be more specific, one can find:

(a)
τ̄

τ
= t2 for Jones invariants,fK(t) ≡ V (t). The corresponding skein relations are

t−1V +(t)− tV −(t) = (t−1/2− t1/2)V 0(t) (2.11)

and

(b)
τ̄

τ
= t−1 for Alexander invariants,fK(t) ≡ ∇(t). The corresponding skein relations†

are

∇+(t)−∇−(t) = (t−1/2− t1/2)∇0(t) . (2.12)

To complete this brief review of the polynomial knot-invariant construction from the
representation of the braid groups let us mention that Alexander invariants also allow another
useful description [Bir]. Write the generators of the braid group in the so-called Magnus
representation

σj ≡ σ̂j =



1 0 · · ·
0

. . .

... A
...

. . . 0
· · · 0 1


← j th row A =

 1 0 0
t −t 1
0 0 1

 . (2.13)

Now the Alexander polynomial of the knot represented by the closed braidW = ∏N
j=1 σαj

of lengthN can be written as follows:

(1+ t + t2+ · · · + tn−1)∇(t){A} = det

[
N∏
j=1

σαj − e
]

(2.14)

where the indexj runs ‘along the braid’, i.e. labels the number of generators used, while
indexα = {1, . . . , n−1, n, . . . ,2n−2}marks the set of braid generators (‘letters’) ordered as
follows {σ1, . . . , σn−1, σ

−1
1 , . . . , σ−1

n−1}. In our further investigations we repeatedly address
that representation.

Let us stress that in general the minimal irreducible length of the braid, introduced
above, is not related directly to any topological knot invariants but we show below that
nevertheless the ‘primitive word’ can be served as a well defined characteristic of the ‘knot

† Let us stress that one can obtain the standard skein relations for Alexander polynomials from (2.12) replacing
t1/2 by −t1/2.
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complexity’. The ‘primitive word’ has the simple topological sense which can be expressed
in the following necessary condition. If the ‘primitive word’ of some closed braid ofn

strings has unit length then this braid belongs to the ‘trivial’ class and the corresponding
knot is represented uniquely by a set ofn disjoint unentangled trivial loops.

We are interested in the limit behaviour of knot or link invariants when the length of
the corresponding braid tends to infinity, i.e. when the braid ‘grows’. In that case we can
rigorously define some more simple topological characteristics than the algebraic invariant
which we call the ‘knot complexity’.

Definition 1. Call the knot complexity, η, the power of some algebraic invariant,fK(t)
(Alexander, Jones, HOMFLY) (see also [GN2])

η = lim
|t |→∞

ln fK(t)

ln t
. (2.15)

Remark. By definition, the ‘knot complexity’ takes one and the same value for rather a
broad class of topologically different knots corresponding to algebraic invariants of one and
the same power, being from that point of view weaker topological characteristics than the
complete algebraic polynomial.

Let us summarize the advantages of the quantity introduced in (2.15) with respect to
the corresponding topological invariantfK(t):

(i) One and the same value ofη characterizes a narrow class of ‘topologically similar’
knots which is, however, much broader than the class represented by the polynomial
invariantX(t). This allows one to introduce the smoothed measures and distribution
functions forη.

(ii) The knot complexityη describes correctly (at least from the physical point of view) the
limit cases:η = 0 corresponds to ‘weakly entangled’ trajectories whileη ∼ N matches
the system of ‘strongly entangled’ paths. The latter case has been discussed in detail
in [GN2].

(iii) The knot complexity keeps all non-abelian properties of the polynomial invariants.

Our main goal in the present section concerns the estimation of the limit probability
distribution ofη for the knots obtained by randomly generated closedB3-braids of length
N . Let us stress that we essentially simplify the general problem ‘of the knot entropy’.
Namely, we insert an additional requirement that the knot should be represented by a braid
from the groupB3 without fail.

2.1.3. Statistical model. We begin our investigation of the probability properties of
algebraic knot invariants with the consideration of statistics of the random loops (‘Brownian
bridges’) on the simplest non-commutative groups. In the most general way the problem
can be formulated as follows.

Take a discrete groupGn with a fixed finite number of generators{g1, . . . , gn−1}. Let
ν be the uniform distribution on the set{g1, . . . , gn−1, g

−1
1 , . . . , g−1

n−1}. For convenience we
supposehj = gi for j = i andhj = g−1

i for j = i + n − 1; ν(hj ) = 1
2n−2 for any j . We

construct the (right-hand) random walk (the random word) onGn with a transition measure,
ν, i.e. the Markov chain{ξn}, ξ0 = e ∈ Gn and Prob(ξj = u|ξj−1 = v) = ν(v−1u) = 1

2n−2.
It means that with the probability 1

2n−2 we add the elementhαN to the given word
hN−1 = hα1hα2 . . . hαN−1 from the right-hand side†.

† Analogously we can construct the left-hand side Markov chain.
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Definition 2. The random wordW formed byN letters taken independently with the uniform
probability distributionν = 1

2n−2 from the set{g1, . . . , gn−1, g
−1
1 , . . . , g−1

n−1} is called the
Brownian bridge(BB) of lengthN on the groupGn if the primitive word ofW is identical
to unity.

In this paper most attention is paid to the following two questions:

(i) What is the probabilityP(N) of the Brownian bridge on the groupGn?
(ii) What is the conditional probability distributionP(k,m|N) of the fact that the subword

W ′ consisting of the firstm letters of theN -letter wordW has the primitive pathk
under the condition that the whole wordW is the Brownian bridge on the groupGn.
(Below we callP(k,m|N) the conditional distribution forBB?)

It has been shown [KNS] that for the free group the corresponding problem can be
mapped to the investigation of random walks on a simply connected tree. Below we
represent briefly some results concerning the limit behaviour of the conditional probability
distribution of BB on the Cayley tree. In the case of braids the more complicated group
structure does not allow us to use the same simple geometrical image directly. Nevertheless
the problem of the limit distribution of random walks onBn can be reduced to the
consideration of the random walk on some graphC(0). In the case of the groupB3

we are able to construct this graph evidently, while for the groupBn (n > 4) we give
an upper estimate for the limit distribution of random walks considering the statistics of
Markov chains on so-called local groups.

2.2. Statistics of random walks and joint distributions of Brownian bridges on free group

The free group,02, with two generatorsg1 andg2 has the well known matrix representation
(see, for instance, [Mum])

g1 =
(

1 0
2 1

)
g2 =

(
1 2
0 1

)
. (2.16)

Consider the Markov chain with the states in the set{g1, g2, g
−1
1 , g−1

2 } as described in
the previous section. Due to the simple topological structure of the free group, the limit
distribution of the random walk on02 follows from the limit distribution of the random
paths on the Cayley tree with four branches [Kes, KhN, KNS] and with the local transitional
probabilities equal to1

4 (see figure 4). In particular, the probability,P(k,N), of the fact
that in the randomly generatedN -letter wordW the primitive word length isk, satisfies the
set of equations [NeSK]

P(k,N + 1) = 1
4P(k + 1, N)+ 3

4P(k − 1, N) (k > 2)

P (k,N + 1) = 1
4P(k + 1, N)+ P(k,N) (k = 1)

P (k,N + 1) = 1
4P(k + 1, N) (k = 0)

P (k, 0) = δk,0 .

(2.17)

The solution of (2.17) in the limitN →∞ is

P(k,N) = (
3
4

)N/2
3(k+1)/2Q(k + 1, N) (2.18)

where

Q(k,N) '


3

√
2

π

1

N3/2
(k = 1)

2

√
2

π

k

N3/2
exp

{
− k

2

2N

}
(1� k < N) .

(2.19)
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Figure 4. Cayley tree corresponding to the free group02.

The functionQ(k,N) defines the probability distribution for the simplest random walk
on the half-lineZ+ with the boundary conditionQW(k = 0, N) = 0.

Lemma 1.The limit conditional probability distribution,P(k,m|N), for the Brownian
bridge on the group02 obeys the central limit theorem [KNS]

P(k,m|N) '
√

2

π

k2

(m(N −m))3/2 exp

{
−k

2

2

(
1

m
+ 1

N −m
)}

(2.20)

whenN →∞; m/N = constant and 1� k < N .

Proof. According to the definition of the conditional probability distribution ofBB, we
split the whole wordW into two subwordsW ′ andW ′′ havingm and (N − m) letters,
respectively. Now using definition 2 and the fact that the wordW is realized as a Markov
chain, we can represent the conditional distribution functionP(k,m|N) in the following
form:

P(k,m|N) = P(k,m)P (k,N −m)
P (0, N)N (k)

(2.21)

whereN (k) = 4× 3k−1 is the number of different primitive words of lengthk.
To make (2.21) clearer, recall that theN -letter wordW on the group02 is in one-

to-one correspondence with theN -step trajectory on the Cayley tree and the length of the
primitive wordW is identical to the distance between ends of the given trajectory along the
Cayley tree (i.e. is equal to the geodesics). The functionsP(k,m) andP(k,N − m) give
the probability that them- and(N −m)-step paths have finished inarbitrary points of the
Cayley tree on the distancek from the origin. The probability of coincidence of the ends
of these two different paths in somecommonpoint on the distancek from the origin is just
1/N (k).

Substituting (2.18) and (2.19) into (2.21) we obtain the postulated expression (2.20),
where the pre-exponent is due to the Dirichlet boundary condition atk = 0. �

Lemma 2.The joint conditional probability distributionP(k1, m1; . . . ; ks,ms |N) of the BB

on the group02 is converged forN → ∞ (where
∑s
j=1mj = N ; mj/N = constant and

1 � kj � N for any 1< j < s) to the finite-dimensional distribution of theBB on the
halfline Z+.

Proof. Define the two-point conditional distribution functions,π+(k1, m1; k+2 , m2|N) and
π−(k1, m1; k−2 , m2|N), having the sense of the probabilities of two following events satisfied
simultaneously:

(i) in theN -letter wordW the firstm1-letter subwordW ′ has the primitive lengthk1;
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Figure 5. Schematic representation of the Brownian
bridges on the Cayley tree. cases (a) and (b) correspond
to calculationπ+ andπ−.

(ii) in the sameN -letter word the subwordW ′′ obtained by adding the next letter to the
subwordW ′ (m2 = m1+ 1) has the primitive lengthk+2 = k1+ 1 (for π+) or k−2 = k1− 1
(for π−) under the condition that the whole wordW is completely contractible (i.e. its
primitive length is equal to zero).

Obviously, π±(k1, m1; k2, m2|N) gives the local transitional probabilities for the
conditional random walk when we make one step ‘forth’ or ‘back’ along the geodesics
on the Cayley tree (figure 5). Now to prove that the conditional radial† random process on
the group02 is mapped onto the simplest random walk without any drift onZ+ and has the
Wiener measure, it is enough to show thatπ+ = π− = 1

2 whenN →∞; i.e. the condition
of the contractibility of the wholeN -step trajectory completely ‘kills’ the drift from the
origin on the Cayley tree for the local jumps.

(a) Supposek+2 = k1+ 1. In accordance with the condition (ii) we have

π+(k1, m1; k+2 = k1+ 1, m2 = m1+ 1|N) = P(k1, m1)P
+(k+2 −k1, 1)P (k+2 , N−m1−1)

P (0, N)N (k1)(z−1)
(2.22)

where(z − 1) is the number of tree branches connecting one arbitrary point on the tree to
the points on the next coordinational sphere (z is the coordinational number of the Cayley
tree), z = 4; P+(k+2 − k1, 1) is the probability to increase the distance along the tree per
one unit making one random step fork1 > 1; P+ = z−1

z
= 3

4.
Substituting (2.18) into (2.22) we obtain the following expression forπ+

π+ = 3
√

3

8

Q(k1+ 1, m1)Q(k1+ 2, N −m1− 1)

Q(1, N)
. (2.23)

(b) Now let k−2 = k1− 1. Reversing the direction along the trajectory, we get

π−(k1, m1; k−2 = k1− 1, m2 = m1+ 1|N)
≡ π+(k−2 , N −m1− 1; k−2 + 1, m1|0)

= P(k−2 , N −m1− 1)P+(k1− k−2 , 1)P (k−2 + 1, m1)

P (0, N)N (k1)(z − 1)
(2.24)

whereP+(k1− k−2 , 1) = 3
4 (compare to (2.22)).

Equation (2.24) reflects the fact that the probability does not change if the random word
is written in the reversed order of steps, i.e. the first step has the numberN , the second has
the number(N −1) and so on. Thus,π− has a similar form to (2.22) and can be written as

π− = 3
√

3

8

Q(k1+ 1, m1)Q(k1, N −m1− 1)

Q(1, N)
. (2.25)

Using the probability conservation law

π+ + π− = 1

† The distances are measured in terms of lengths of geodesics on the Cayley tree.



2420 S K Nechaev et al

and the recursion relation for the simplest random walk on the half-lineZ+ (extracted from
(2.17), (2.18))

Q(k1+ 2, N −m1− 1)+Q(k1, N −m1− 1) = 2Q(k1+ 1, N −m1) (k > 1)

it is possible to rewriteπ± as follows:

π+ = π+

π+ + π− =
1

2

Q(k1+ 2, N −m1− 1)

Q(k1+ 1, N −m1)

π− = π−

π+ + π− =
1

2

Q(k1, N −m1− 1)

Q(k1+ 1, N −m1)
.

(2.26)

Substituting (2.19) into (2.26) we find

π+ = 1

2
− c(1− s)√

N
π− = 1

2
+ c(1− s)√

N
(2.27)

wherec = k1/
√
N (1� k1� N), s = m1/N (1< m < N) andN →∞.

Thus, the transition probabilities for the local jumps along the geodesics on the Cayley
tree under the condition ofBB coincide with the transition probabilities for the simplest
random walk on the halflineZ+ whenN → ∞. Hence, we have one-to-one mapping of
the ‘radial’ random walk onto the tree under the condition ofBB on the standard diffusion
processwithout any drifton the halfline. Applying the standard central limit theorem to the
last process we get the desired statement of the theorem. �

2.3. Limit distribution of power of Alexander invariants of knots generated by randomB3

braids

We start the consideration with the calculation of the distribution function for the conditional
BB on the simplest non-trivial braid groupB3. The groupB3 can be represented by 2× 2
matrices. To be specific, the braid generatorsσ1 andσ2 in the Magnus representation [Bir]
look as follows:

σ1 =
( −t 1

0 1

)
σ2 =

(
1 0
t −t

)
(2.28)

wheret is ‘the spectral parameter’. It is well known that fort = −1 the matricesσ1 andσ2

generate the groupPSL(2,Z) in such a way that the whole groupB3 is its central extension
with the centre

(σ1σ2σ1)
4λ = (σ2σ1σ2)

4λ = (σ1σ2)
6λ = (σ2σ1)

6λ =
(
t6λ 0
0 t6λ

)
. (2.29)

First we restrict ourselves to the examination of the groupPSL(2,Z), for which we
defineσ̃1 = σ1 and σ̃2 = σ2 (at t = −1).

The canonical representation ofPSL(2,Z) is given by the matricesS, T :

S =
(

0 1
−1 0

)
T =

(
1 1
0 1

)
. (2.30)

The braiding relatioñσ1σ̃2σ̃1 = σ̃2σ̃1σ̃2 in the {S, T } representation takes the form

S2T S−2T −1 = 1 . (2.31)

In addition we have

S4 = (ST )3 = 1 . (2.32)
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This representation is well known and reflects the fact that in terms of{S, T }-generators
the groupSL(2,Z) is a free productZ2 ⊗ Z3 of two cyclic groups of second and third
orders, respectively.

The connection of{S, T } and{σ̃1, σ̃2} is as follows:

σ̃1 = T (T = σ̃1)

σ̃2 = T −1ST −1 (S = σ̃1σ̃2σ̃1) .
(2.33)

2.3.1. Random walks on the groupPSL(2,Z). The modular groupPSL(2,Z) is a discrete
subgroup of the groupPSL(2, R). The fundamental domain ofPSL(2,Z) has the form of
a circular triangleABC with the angles

{
0, π3 ,

π
3

}
situated in the upper halfplaneIm τ > 0

of the complex planeτ = u+ iv (see figure 6 for details). By definition of the fundamental
domain, at least one element of each orbit ofPSL(2,Z) lies inside theABC domain and
two elements lie on the same orbit if and only if they belong to the boundary of theABC

domain. The groupPSL(2,Z) is completely defined by its basic substitutions under the
action of generatorsS andT :

S : ζ →−1/ζ

T : ζ → ζ + 1 .
(2.34)

Let us choose an arbitrary elementζ0 from the fundamental domain and construct
the orbit corresponding to it. In other words we raise a graph,C(0), which connects
the neighbouring images of the initial elementζ0 obtained under successive action of the
generators from the set{S, T , S−1, T −1} on the elementζ0. The corresponding graph is
shown in figure 6 by the broken line and its topological structure is clear—reproduced in
figure 7. It can be seen that despite that the graphC(0) does not correspond to the free
group and has local cycles, its ‘backbone’,C(γ ), has a Cayley tree structure but with a
reduced number of branches compared to the graph of the free groupC(02).

Now we turn to the problem of the limit distribution of random walks on the graph
C(0). The walk is determined as follows:

(i) Take an initial point (‘root’) of the random walk on the graphC(0). Consider
the discrete random jumps over the neighbouring vertices of the graph with the
transition probabilities induced by the uniform distributionν on the set of generators

Figure 6. The Riemann surface for the
modular group. The graphC(0) representing
the topological structure ofPSL(2, Z) is
shown by the broken line.
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Figure 7. The graphC(0) and its backbone
graphC(γ ) (see the explanations in the text).

{σ̃1, σ̃2, σ̃
−1
1 , σ̃−1

2 }. These probabilities are (see equation (2.33))

Prob(ξn = T ζ0|ξn−1 = ζ0) = 1
4

Prob(ξn = (T −1ST −1)ζ0|ξn−1 = ζ0) = 1
4

Prob(ξn = T −1ζ0|ξn−1 = ζ0) = 1
4

Prob(ξn = (T S−1T )ζ0|ξn−1 = ζ0) = 1
4 .

(2.35)

The following facts should be taken into account:
(a) the elementsSζ0 andS−1ζ0 coincide (as it follows from (2.34));
(b) the process is Markovian in terms of the alphabet{σ̃1, . . . , σ̃

−1
2 } only;

(c) the total transition probability is conserved.
(ii) Define the shortest distance,k, along the graph between the root and terminal points

of the random walk. By construction, this distance coincides with the length|W{S,T }|
of the minimal irreducible wordW{S,T } written in the alphabet{S, T , S−1, T −1}. The
connection of the distance,k, with the length|W{σ̃1,σ̃2}| of the minimal irreducible word
W{σ̃1,σ̃2} written in the alphabet{σ̃1, σ̃2, σ̃

−1
1 , σ̃−1

2 } is established in the following lemma.

Lemma 3.(i) |W{σ̃1,σ̃2}| = 0 if and only if k = 0; (ii) for k � 1 the length|W{σ̃1,σ̃2}| has the
following behaviour:

|W{σ̃1,σ̃2}|
k

∣∣∣∣
k→∞
= 1+O

(
1

k

)
.

The proof is rather trivial and is based on the evident construction of the graphC(0)

where each bond by means of (2.33) can be associated with the generatorsσ̃±1
1 and

(σ̃1σ̃2σ̃1)
±1.

The ‘coordinates’ of the graph vertices are defined in the following way (see figure 7):

(a) We apply the arrows for the bonds of the graphC(0) corresponding toT -generators.
The step towards (away from) the arrow means the application ofT (T −1).

(b) We characterize each elementary cell of the graphC(0) by its distance,µ, along the
graph backboneγ from the root cell.

(c) We introduce the variableα = {1, 2} which enumerates the ingoing vertices in each cell
only. We say that the walker stays in the cellM located at the distanceµ along the
backbone from the origin if and only if it visits one of two ingoing vertices ofM. Such
labelling gives the unique coding of the whole graphC(0).
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Define the probabilityUα(µ,N) that theN -step random walk along the graphC0) is
started in the root point and is finished in theα-vertex of the cell at the distance ofµ steps
along the backbone. We should stress thatUα(µ,N) is the probability to stay inany of
Nγ (µ) = 3× 2µ−1 cells situated at the distanceµ along the backbone.

It is possible to write the closed system of recursion relations for the functionsUα(µ,N),
but here we attend to some more rough characteristics of the random walk. Namely we
calculate the ‘integral’ probability distribution of the fact that the trajectory of the random
walk starting in an arbitrary vertex of the root cellO is finished in anarbitrary vertex
point of the cellM situated on the distanceµ along the graph backbone. This probability,
U(µ,N), reads

U(µ,N) = 1
2

∑
α={1,2}

Uα(µ,N) .

Lemma 4.The relation between the distances,k, along the graphC(0) and µ along its
backboneC(γ ) is as follows:

k

µ

∣∣∣∣
µ→∞

= 1+O

(
1

µ

)
. (2.36)

This fact is the simple consequence of the constructions of the graphsC(0) and C(γ )
(figure 7).

The following theorem gives the limit distribution for the random walks on the group
PSL(2,Z).

Theorem 2.The probability distributionU(k,N) that the randomly generatedN -letter word
W{σ̃1,σ̃2} with the uniform distributionν = 1

4 over the generators{σ̃1, σ̃2, σ̃
−1
1 , σ̃−1

2 } can be
contracted to the minimal irreducible word of lengthk, has the following limit behaviour

U(k,N) ' h√
π(4− h)

(
1+ 2

√
2

4

)N 
1

N3/2
k = 0

1

N3/2
2k/2k exp

(
−k

2h

4N

)
1� k < N

(2.37)

whereh = 2+
√

2

2
.

Proof. Suppose the walker stays in the vertexα of the cellM located at the distanceµ > 1
from the origin along the graph backboneγ . The change inµ after making one arbitrary
step from the set{σ̃1, σ̃2, σ̃

−1
1 , σ̃−1

2 } is summarized in the following table.

Table 1.

α = 1 α = 2

σ̃1 = T µ→ µ+ 1 σ̃1 = T µ→ µ− 1
σ̃2 = T −1ST −1 µ→ µ σ̃2 = T −1ST −1 µ→ µ+ 1
σ̃−1

1 = T −1 µ→ µ− 1 σ̃−1
1 = T −1 µ→ µ+ 1

σ̃−1
2 = T S−1T µ→ µ+ 1 σ̃−1

2 = T S−1T µ→ µ

It can be seen that for any value ofα two steps increase the length of the backbone,µ,
one step decreases it and one step leavesµ unchanged.

Let us introduce the effective probabilities:p1–to jump to some specific cell among
three neighbouring ones of the graphC(0) andp2–to stay in the given cell. Because of the
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symmetry of the graph the conservation law has to be written as 3p1+p2 = 1; by definition

we have:p1
def= ν = 1

4. Thus we can write the following set of recursion relations for the
integral probabilityU(µ,N):

U(µ,N + 1) = 1
4U(µ+ 1, N)+ 1

4U(µ,N)+ 1
2U(µ− 1, N) (µ > 2)

U(µ,N + 1) = 1
4U(µ+ 1, N)+ 1

2U(µ,N) (µ = 1) (2.38)

U(µ,N = 0) = δµ,1 .
The solution of (2.38) we search for in the form

U(µ,N) = AµBNV (µ,N) (2.39)

where the constantsA andB we choose from the auxiliary conditions:

A

4B
= 1

h

1

4B
= 1− 2

h

1

2AB
= 1

h
(h > 1) . (2.40)

Resolving these equations we get

A =
√

2 B = 1

4
+
√

2

2
h = 2+

√
2

2
. (2.41)

Equations (2.40) imply that for the functionV (µ,N) we obtain a normal1D random
walk on the halflineµ > 0 (i.e. V (µ 6 0, N) ≡ 0) with conserved transition probabilities
and with some special boundary and initial conditions:(

1− 2

h

)
V (µ,N)+ 1

h
V (µ− 1, N) (µ > 2)

V (µ,N + 1) = 1

h
V (µ+ 1, N)+ 2

(
1− 2

h

)
V (µ,N) (µ = 1) (2.42)

V (µ,N = 0) = δµ,1 .
It is possible to obtain the exact asymptotic solution of (2.42) forN → ∞. First we

represent (2.42) in a slightly different way, rewriting as follows:

V (µ,N + 1) = 1

h
V (µ+ 1, N)+

(
1− 2

h

) (
1+ δµ,1

)
V (µ,N)+ 1

h
V (µ− 1, N) (2.43)

with the boundaryV (µ = 0, N) = 0 and initialV (µ,N = 0) = δµ,1 conditions.
Then we introduce the generating function forN -variable and the sin-Fourier transform

for µ-variable on the halflineµ > 0

V (u, s) =
∞∑
N=0

sN
∞∑
µ=0

V (µ,N) sin
πuµ

l
. (2.44)

Now we have from (2.43) and (2.44)

1

s
V (u, s)− 1

s
sin

πu

l
= 2

h
cos

πu

l
V (u, s)+

(
1− 2

h

)
V (u, s)

+
(

1− 1

h

)
sin

πu

l

1

l

∫ l

0
sin

πu

l
V (u, s)du . (2.45)

The solution of (2.45) reads

1

l

∫ l

0
sin

πu

l
V (u, s)du = D1(h, s)

D2(h, s)
(2.46)
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where

D1(h, s) = 1

π

∫ π

0

sin2w dw

1− s ((2/h) cosw + 1− 2/h)

= −h
s
+ h

4s2

(
h+ 6s − hs −√h

√
(1− s)(h+ 4s − hs)

)∣∣∣∣
s→1−

' h

2
− h
√
h

2

√
1− s +O(1− s) (2.47)

and

D2(h, s) = 1−
(

1− 2

h

)
1

π

∫ π

0

s sin2w dw

1− s ((2/h) cosw + 1− 2/h)

= 1−
(

1− 2

h

)
sD1(h, s) . (2.48)

It is easy to see thatD2(h, s) is always positive for any|s| 6 1, which means that
equation (2.45) has a continuous spectrum and the limit distribution of the functionV (µ,N)

is governed by the central limit theorem for the random walks on the halfline. The exact
solution for the functionV (µ, s) is

V (µ, s) = 1

D2(h, s)

2

π

∫ π

0

sinw sinwµ dw

1− s ((2/h) cosw + 1− 2/h)
. (2.49)

In particular, we have

V (µ = 1, s) = 2h
(
1−√h√1− s )

4− h+ (h− 2)
√
h
√

1− s =
2
√
h

h− 2

1

a +√ε + constant (2.50)

and

V (µ� 1, s) ' 2h exp
(−µ√h√1− s )

4− h+ (h− 2)
√
h
√

1− s =
2
√
h

h− 2

exp
{−µ√h√1− s}
a +√ε (2.51)

wherea = 4−h√
h(h−2)

andε = 1− s > 0.
Performing the inverse Laplace transform and taking into account the contribution from

the branching point atε = 0 only, we obtain in the limitN →∞

V (µ = 1, N) ' 2
√
h

h− 2

(
1√
πN
− a ea

2Nerfc
(
a
√
N

)) ' √
h

a
√
π(h− 2)

1

N3/2
(2.52)

and

V (µ� 1, N) ' 2
√
h

h− 2

(
1√
πN

e−µ
2h/4N − a eµa

√
h+a2Nerfc

(
a
√
N + µ

√
h

2
√
N

))
'

√
h

a
√
π(h− 2)

µ

N3/2
exp

(
−µ

2h

4N

)
. (2.53)

Substituting the last equation in (2.39) and taking into account lemmas 3 and 4, we get the
statement of theorem 2. �
Corollary 1. The probability distributionU(k,m|N) of the fact that in the randomly
generatedN -letter trivial word in the alphabet{σ̃1, σ̃2, σ̃

−1
1 , σ̃−1

2 } the subword of firstm
letters has a minimal irreducible lengthk, reads

U(k,m|N) ' h√
π(4− h)

k2

(m(N −m))3/2 exp

{
k2h

4

(
1

m
+ 1

N −m
)}

. (2.54)
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Proof. The conditional probability distributionU(µ,m|N) of the fact that the random walk
on the backbone graph,C(γ ), started from origin visits after firstm (m/N = constant)
steps some graph vertex situated at the distanceµ and afterN steps returns to the origin,
is determined as follows (compare to the proof of lemma 1)

U(µ,m|N) = U(µ,m)U(µ,N −m)
U(µ = 0, N)Nγ (µ)

(2.55)

where theNγ = 3 × 2µ−1) and U(µ,N) is given by (2.37). Using lemma 3 we get
equation (2.54). �

2.3.2. The random walks on the braid groupB3 and the limit distribution of powers of
Alexander invariants. Now we are in a position to formulate some limit theorems forBB

on the groupB3 as well as to find the limit distribution for the knot complexityη (i.e. a
power of the Alexander polynomial of the knots represented by the random braids fromB3).

Theorem 3.The probabilityZ(k,m|N) for the Brownian bridge on the groupB3 has the
limit behaviour

Z(k,m|N) �


constant

m3/2(N −m)3/2 k = 0

ψ(k,m)ψ(k,N−m) exp

{
−constantk2

(
1

m
+ 1

N−m
)}

1� k < N

(2.56)

whereψ (k,m) is some function ofk andm with low-power behaviour ink andm. (We
expectψ (k,m) ∼ k/m3/2 but the given proof is too rough to show that behaviour.)

Proof. The conditional probability distributionZ(k,m|N) for N → ∞ is bounded from
below and above

P(k,m|N) 6 Z(k,m|N) 6 U(k,m|N) (2.57)

whereP(k,m|N) andU(k,m|N) are the limit probabilities for the Brownian bridges on
the groups02 (i.e. the free group) andPSL(2,Z) (i.e. the braid group at the pointt = −1)
correspondingly. Substituting asymptotics (2.20) and (2.54) into (2.57) we come to the
conclusion (2.56). �

The problem of calculating the conditional limit probability distribution of the Brownian
bridges on the groupB3 can easily be turned to the problem of calculating the conditional
distribution function for the powers of Alexander polynomial invariants of knots produced
by randomly generated closed braids from the groupB3, which allows one to make a first
step in the investigation of correlations in knotted random walks.

The closure of an arbitrary braidb ∈ B3 of total lengthN gives the knot (link)K. Now
split the braidb in two partsb′ andb′′ with the respective lengthsm andN −m and make
the ‘phantom closure’ of the sub-braidsb′ andb′′ as is shown in figure 8. The phantomly
closed sub-braidsb′ and b′′ correspond to two phantomly closed parts (‘subknots’) of the
knot (link)K. Now we could ask for the conditional probability to find these subknots in the
state characterized by the complexityη when the knot (link)K as a whole is characterized
by the complexityη = 0 (i.e. the topological state ofK ‘is close to trivial’).

It is convenient to introduce the normalized generators of the groupB3 ||σ±1
j || =

(detσ±1
j )−1σ±1

j to get rid of an unimportant commutative factor dealing with the norm of
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the matricesσ1 andσ2. Now we can rewrite the power of Alexander invariant (2.14) in the
form

η = [#(+)− #(−)] + η̄ (2.58)

where #(+) and #(−) are the numbers of theσαj or σ−1
αj

in the given braid and̄η is the
power of the normalized matrix product

∏N
j=1 ||σαj ||. The condition of Brownian bridge

implies η = 0 (i.e. #(+)− #(−) = 0 andη̄ = 0).

Theorem 4.Take the set of all knots obtained by closure ofB3 braids of lengthN with
uniform distribution over the generators. The conditional probability distributionU(η̄,m|N)
for the normalized complexitȳη of Alexander polynomial invariant has the Gaussian
behaviour and is given by equation (2.54) wherek = η̄.

Proof. Write

||σ1|| = T (t) ||σ2|| = T −1(t)S(t)T −1(t) (2.59)

whereT (t) andS(t) are the generators of the ‘t-deformed’ groupPSLt(2,Z)

T (t) =
(
(−t)1/2 0

0 (−t)−1/2

) (
1 1
0 1

)
T −1(t) =

(
(−t)−1/2 0

0 (−t)1/2
) (

1− 1
0 1

)
(2.60)

S(t) =
(
(−t)−1/2 0

0 (−t)1/2
) (

0 1
−1 0

)
.

The groupPSLt(2,Z) preserves the relations of the groupPSL(2,Z) without changes,
i.e. (T (t)S(t))3 = S4(t) = T (t)S2(t)T −1(t)S−2(t) = 1 (cf equation (2.31)). Hence, if we
construct the graphC(0t) for the groupPSLt(2,Z) connecting the neighbouring images
of an arbitrary element from the fundamental domain, we ultimately come to the fact
that the graphsC0t) andC(0) (figure 7) are topologically equivalent. This is the direct
consequence of the fact that the groupB3 is the central extension ofPSL(2,Z). Let us
stress that the metric properties of the graphsC(0t) andC(0) are different because of the
different embeddings of the groupsPSLt(2,Z) andPSL(2,Z) into the complex plane.

Thus, the matrix product
∏N
j=1 ||σαj || for the uniform distribution over the braid

generators is in one-to-one correspondence with theN -step random walk along the graph
C(0) (as is explained in the proof of theorem 2) and its power coincides with the

Figure 8. Construction of a Brownian bridge for knots represented
by B3-braids.
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corresponding geodesics length along the backbone graphγ . Taking into account lemmas 2
and 3 we conclude that the limit distribution of random walks on the groupB3 in terms of
normalized generators (2.59) is given by (2.37) wherek should be regarded as a power of
the product

∏N
j=1 ||σαj ||. The statement of the theorem now follows from corollary 1.�

3. Random walks on locally free groups

We aim to get the asymptotics of the conditional limit distributions ofBB on the braid group
Bn. For the casen > 3 it is a rather hard problem which is as yet unsolved. However, we
can extract some estimate for the limit probability distributions ofBB onBn considering the
limit distributions of random walks on the so-called ‘local groups’ [Ve].

Definition 3. The groupLFn+1(d) is calledlocally free if the generators,{f1, . . . , fn} obey
the following commutation relations:

(i) Each pair(fj , fk) generates the free subgroup of the groupLFn if |j − k| < d;
(ii) fjfk = fkfj for |j − k| > d

(Below we restrict ourselves to the cased = 2 only for which we defineLFn+1(2) ≡
LFn+1).

Theorem 5.The limit probability distribution for theN -step random walk on the group
LFn+1 to have the minimal irreducible lengthµ is

P(µ,N) ' constant

N3/2
e−N/6µ sinhµ exp

(
−3µ2

2N

)
(n = 3)

P(µ,N) ' constant

N3/2

(
h(pq)1/2

)N (
q

p

)µ/2
exp

(
−µ

2h

4N

)
(n� 1)

(3.1)

whereh = 2+ r/(pq)1/2 and the values ofp, q, r are given by (3.21).

Proof. We propose two approaches valid in two different cases: (i) forn = 3 and (ii) for
n� 1.

(i) The following geometrical image is useful. Establish the one-to-one correspondence
of the random walk in somen-dimensional spaceLHn(x1, . . . , xn) with the random walk
on the groupLFn+1, written in terms of generators{f1, . . . , f

−1
n }. To be more specific,

when one adds one generator, say,fj , (or f −1
j ) to the given word inLFn, the walker makes

one unit step towards (backwards forf −1
j ) the axis [0, xj [ in the spaceLHn(x1, . . . , xn).

Now relations (i) and (ii) of definition 3 could be reformulated in terms of metric
properties of the spaceLHn. Actually, relation (ii) means that the successive steps along
the axes [0, xj [ and [0, xk[ (|j − k| > 2) commute, hence the section(xj , xk) of the space
LHn is flat and has the Euclidean metric dx2

j + dx2
k . A completely different situations

appears when looking at the projections of the random trajectories inLHn to the space
sections(xj , xj±1). Here the steps of the walk obey the free group relations (i) and the walk
itself is mapped to the walk on the Cayley tree. It is well known that the Cayley tree can
be uniformly embedded (without gaps and self-intersections) into the 3-pseudosphere which
gives the representation of the non-Euclidean plane with the constant negative curvature
(Lobachevskii plane). Thus, the section(xj , xj+1) has the Lobachevskii plane metric which
it is convenient to write in the form(1/x2

j )(dx
2
j + dx2

j+1).

For the groupLF4 these arguments lead to the fact that the appropriate spaceLH(3)

has the following metric:

ds2 = dx2
1 + dx2

2 + dx2
3

x2
2

. (3.2)
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Actually, the section(x1, x3) is flat while the sections(x1, x2) and (x2, x3) have the
Lobachevskii plane metric. The non-Euclidean (hyperbolic) distance between two points
M ′ andM ′′ in the spaceLH3 is defined as follows:

coshµ(M ′M ′′) = 1+ 1

x2(M ′)x2(M ′′)

3∑
i=1

(
xi(M

′)− xi(M ′′)
)2

(3.3)

where{x1, x2, x3} are the Euclidean coordinates in the3D-halfspacez > 0 andµ is regarded
as the geodesics on the 4-pseudosphere (Lobachevskii space) [KTS].

The diffusion equation for the scalar densityP(q, t) of the free random walk on the
Riemann manifold reads (see, for instance, [KTS])

∂

∂N
P (q, N) = D 1√

g

∂

∂qi

(√
g

(
g−1

)
ik

∂

∂qk

)
P(q, N) (3.4)

whereD = 1
6 for uniform distribution over generators and

P(q, N = 0) = δ(q)∫ √
gP (q, N)dq = 1

(3.5)

(gik is the metric tensor of the manifold;g = detgik). For the 4-pseudospheregik reads

||gik|| =
∣∣∣∣∣∣
∣∣∣∣∣∣

1 0 0
0 sinh2µ 0
0 0 sinh2µ sin2 θ

∣∣∣∣∣∣
∣∣∣∣∣∣ . (3.6)

Solving (3.4) one gets

P(µ,N) = e−ND

8π
√
π(ND)3

µ

sinhµ
exp

(
− µ2

4ND

)
. (3.7)

We find it very important to pay attention to the following fact. The distribution function
P(µ,N) gives the probability to find the random walk starting at the pointµ = 0 afterN
steps in somespecificpoint located at the distanceµ in the corresponding non-Euclidean
space. The probability to find the pointsomewhereat the distanceµ afterN steps is

P(µ,N) = P(µ,N)N (µ) (3.8)

where

N (µ) = sinh2µ (3.9)

is the area of the sphere of radiusµ on the 4-pseudosphere.
The difference betweenP and P is insignificant in the Euclidean geometry, while in

the non-Euclidean space it becomes dramatic. Returning to the random walk on the group
LF4 we conclude that the distribution functionP(µ,N) gives the probability for theN -
letter random word written in terms of uniformly distributed generators onLF4 to have the
primitive word of some lengthµ (see equation (3.1)).

(ii) For the groupLFn+1 (n � 1) we extract the limit behaviour of the distribution
function exactly evaluating of volume of the maximal non-commutative subgroup ofLFn+1.

Let Vn(µ) be the number of all non-equivalent primitive words of lengthµ on the group
LFn+1. We show thatVn(µ) has the following asymptotics forµ� 1:

Vn(µ) = constant×
(

7− 8π2

n2

)µ
(n� 1) . (3.10)
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To get (3.10) we represent each primitive wordWp of lengthµ in the groupLFn+1 in
the so-callednormal order

Wp =
(
fα1

)m1
(
fα2

)m2
. . .

(
fαs

)ms (3.11)

where
∑s

i=1 |mi | = µ(mi 6= 0 ∀i; 1 6 s 6 µ) and the sequence of generatorsfαi in (3.11)
for all distinct fαi satisfies the following local rules:

(a) If fαi = f1, thenfαi+1 ∈ {f2, f3, . . . fn};
(b) If fαi = fk (1< k 6 n− 1), thenfαi+1 ∈ {fk−1, fk+1, . . . fn};
(c) If fαi = fn, thenfαi+1 = fn−1.

These local rules give the prescription of how to enumerate all distinct primitive words.
If the sequence of generators in the primitive wordWp does not satisfy the rules (a)–(c),
we commute the generators in the wordWp until the normal order is restored. Hence, the
normal order representation enables one to give the unique coding of all non-equivalent
primitive words in the groupLFn+1.

The calculation of the number of distinct primitive words,Vn(µ), of the given length
µ is now rather straightforward:

Vn(µ) =
µ∑
s=1

R(s)
∑′

{m1,...,ms }
1

[
s∑
i=1

|mi | − µ
]

(3.12)

whereR(s) is the number of all distinct sequences ofs generators taken from the set
{f1, . . . , fn} and satisfying the local rules (a)–(c) while the second sum gives the number
of all possible representations of the primitive path of lengthµ for the fixed sequence of
generators(‘prime’ means that the sum runs over allmi 6= 0 for 1 6 i 6 s; 1 is the
Kronecker function).

To get the partition functionR(s) let us mention that the local rules (a)–(c) define the
generalized Markov chain with the states given by then× n coincidence matrixT̂n where
the rows and columns correspond to the generatorsf1, . . . , fn:

T̂n =



0 1 1 1 . . . 1 1
1 0 1 1 . . . 1 1
0 1 0 1 . . . 1 1
0 0 1 0 . . . 1 1
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . 1 0


. (3.13)

Thus,

Rn(s) = Sp
[(
T̂n

)s]
. (3.14)

Supposing that the main contribution in (3.12) appears froms � 1 we take forRn(s) the
following asymptotic expression:

Rn(s)
∣∣
s�1 =

(
λmax
n

)s
(3.15)

whereλmax
n is the highest eigenvalue of the matrixT̂n (n� 1).

Simple but rather tedious calculations give the following value for the highest eigenvalue
λmax
n for n� 1:

λmax
n

∣∣∣
n�1
= 3− 4π2

n2
+ o

(
1

n2

)
. (3.16)
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Figure 9. The verticesA andB should be glued because they represent
one and the same word in the groupLFn+1.

The remaining sum in equation (3.12) is independent ofR(s), so its calculation is trivial:∑′

{m1,...,ms }
1

[
s∑
i=1

|mi | − µ
]
= 2s

(µ− 1)!

(s − 1)!(µ− s)! . (3.17)

Substituting (3.16) and (3.17) into (3.12) and evaluating the sum overs we arrive at (3.10).
The random walk on the groupLFn+1 can now be viewed as follows. Take thefree

group0n with generators{f̃1, . . . , f̃n} where allf̃i (1 6 i 6 n) do not commute. The group
0n has a structure a of 2n-branching Cayley tree,C(0n), where the number of distinct words
of lengthµ is equal toṼn(µ),

Ṽn(µ) = 2n(2n− 1)µ−1 . (3.18)

The graphC(LFn+1) corresponding to the groupLFn+1 can be constructed from the graph
C(0n) by the following recursion procedure:

(1) Take the root vertex of the graphC(0n) and consider all vertices on the distanceµ = 2.
Identify those vertices which correspond to the equivalent words in the groupLFn+1.
(One particular example is shown in figure 9.)

(2) Repeat this procedure taking all vertices at the distanceµ = (1, 2, . . .) and ‘gluing’ the
vertices at the distanceµ+ 2 according to definition 3.

Despite the very complex local structure of the graphC(LFn+1), equations (3.10) and
(3.18) enable one to find the asymptotics of the random walk on the graphC(LFn+1). The
probability P(µ,N) to find the walker at the distanceµ from the origin afterN random
steps on the graphC(LFn+1) satisfies the following recurrence relation:

P(µ,N + 1) = pP(µ+ 1, N)+ rP(µ,N)+ qP(µ− 1, N) (3.19)

wherep, r andq are the probabilities ‘to go back’ (µ → µ − 1), ‘to stay’ (µ → µ) and
‘to go forth’ (µ → µ + 1) making one random step (N → N + 1). For instance, for the
random walk onC(0n) one hasp = 1/2n, r = 0, q = 1− p.

The local transition probabilitiesp, r, q can be computed forµ � 1 as follows. Take
some point at the distance (‘level’)µ from the origin on the graphC(LFn+1) (embedded
in C(0n)). The average number of branches going from the levelµ to the levelµ+ 1 and
leading todistinct vertices isVn(µ+ 1)/Vn(µ) (see equation (3.10)). Hence we have in the
limit n� 1

q

p
= 7 (3.20)
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while the part foridentical vertices on the levelµ+ 1 is equal toVn(µ)(2n−1)−Vn(µ+1)
Vn(µ)(2n−1) which

gives the value ofr. Thus we finally get

r = 2n− 8

2n− 1
p = 7

8(2n− 1)
q = 49

8(2n− 1)
. (3.21)

Substituting (3.21) into (3.19) we can proceed in the same way as in the proof of theorem 5.
Namely, we introduce

P(µ,N) = AµBNV(µ,N)
(cf equation (2.22)) where we derive the constantsA andB from the auxiliary conditions

p

AB
= 1

h

1− (p + q)
A

= 1− 2

h

qB

A
= 1

h
.

Under such a choice of constants the functionV(µ,N) describes the ordinary random walk
on the halfline with the diffusion coefficient1

h
. Thus we obtain the desired distribution

function (3.1) of the primitive word lengths for random walks on the groupLFn+1. �

Corollary 2. Equation (3.1) gives the estimation for the limit distribution of the primitive
words on the groupBn for n� 1 from below.

3.1. Discussion

We shall stress that the ‘Brownian bridge’ condition for the random walk on the locally
free groups completely compensates the ‘drift from the origin’ turning the corresponding
limit probability distribution to the Gaussian onewith zero meanif the distribution over
the generators is uniform. We believe this property to be general for random walks on
non-commutative groups. Anyway, the mentioned behaviour has recently been established
in many cases [KNS, NeS, Let].

We find very encouraging further investigation of the random walks on the groups
LFn+1(d) for different values ofd. It should give an insight for consideration of the
statistics of random walks on ‘partially commutative groups’ and it could also be regarded
as a natural model for the problem of limit distributions on the group of coloured braids.

Finally, let us express the conjecture which generalizes our consideration.

Conjecture 1.The complexityη of any known algebraic invariants (Alexander, Jones,
HOMFLY) for the knot represented by theBn-braid of lengthN with the uniform distribution
over generators has the following limit behaviour:

P(η,N) ∼ constant

N3/2
η exp

(
−α(n)N + β(n)η − η2

δ(n)N

)
(3.22)

whereα(n), β(n), δ(n) are numerical constants depending onn only.
The knot complexityη in an ensemble ofBrownian bridgeson the groupBn has a

Gaussian distribution, where

〈η̄〉 = 0 〈η̄2〉 = 1
2δ(n)N (3.23)

andδ(n) is some constant depending onn only.

The proof of this conjecture is currently in progress. The main idea consists in utilizing
the relation between the knot complexityη, the length of the shortest non-contractible word
and the length of geodesics on some hyperbolic manifold.
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